
A High Performance Implementation of MPI-IO for a Lustre File System

Environment

Phillip M. Dickens and Jeremy Logan

Department of Computer Science, University of Maine

Orono, Maine, USA
 dickens@umcs.maine.edu
 jeremy.logan@maine.edu

Abstract— It is often the case that MPI-IO performs poorly

in a Lustre file system environment, although the reasons for

such performance are not currently well understood. We

hypothesize that such performance is a direct result of the

fundamental assumptions upon most parallel I/O optimisations

are based. In particular, it is almost universally believed that

parallel I/O performance is optimised when aggregator

processes perform large, contiguous I/O operations in parallel.

Our research, however, shows that this approach can actually

provide the worst performance in a Lustre environment, and

that the best performance may be obtained by performing a

large number of small, non-contiguous I/O operations. In this

paper, we first demonstrate and explain these non-intuitive

results. We then present a user-level library, termed Y-lib,

which redistributes data in a way that conforms much more

closely with the Lustre storage architecture than does the data

redistribution pattern employed by MPI-IO. We then provide

experimental results showing that Y-lib can significantly

increase I/O performance, the degree to which is a function of

the number of aggregator processes and Object Storage

Targets, and the communication infrastructure of the system.

1. Introduction

Large-scale computing clusters are being increasingly

utilized to execute large, data-intensive applications in

several scientific domains. Such domains include high-

resolution simulation of natural phenomenon, large-scale

image analysis, climate modelling, and complex

financial modelling. The I/O requirements of such

applications can be staggering, ranging from terabytes to

petabytes, and managing such massive data sets has

become a significant bottleneck in parallel application

performance.

This issue has led to the development of powerful

parallel file systems that can provide tremendous

aggregate storage capacity with highly concurrent access

to the underlying data (e.g., Lustre [1], GPFS [15],

Panasas [7]). This issue has also led to the development

of parallel I/O interfaces with high-performance

implementations that can interact with the file system

API to optimise access to the underlying storage. An

important combination of file system/parallel I/O

interface is Lustre, an object-based, parallel file system

developed for extreme-scale computing clusters, and

MPI-IO [5], the most widely-used parallel I/O API. The

problem, however, is that there is currently no

implementation of the MPI-IO standard that is optimised

for the Lustre file system, and the performance of

current implementations is, by and large, quite poor [3,

12, 21]. Given the wide spread use of MPI-IO, and the

expanding utilization of the Lustre file system, it is

critical to provide an MPI-IO implementation that can

provide high-performance, scalable I/O to MPI

applications executing in this environment.

There are two key challenges associated with

achieving high performance with MPI-IO in a Lustre

environment. First, Lustre exports only the POSIX file

system API, which was not designed for a parallel I/O

environment and provides little support for parallel I/O

optimisations. This has led to the development of

approaches (or “workarounds”) that can circumvent (at

least some of) the performance problems inherent in

POSIX-based file systems (e.g., two-phase I/O [17, 18],

and data-sieving[20]). The second problem is that the

assumptions upon which these optimisations are based

simply do not hold in a Lustre environment.

The most important and widely held assumption, and

the one upon which most collective I/O optimisations

are based, is that parallel I/O performance is optimised

when application processes perform a small number of

large, contiguous (non-overlapping) I/O operations

concurrently. In fact, this is the assumption upon which

collective I/O operations are based. The research

presented in this paper, however, shows that this

assumption can lead to very poor I/O performance in a

Lustre file system environment. Moreover, we provide a

large set of experimental results showing that the

antithesis of this approach, where each aggregator

process performs a large number of small (non-

contiguous) I/O operations, can, when properly aligned

with the Lustre storage architecture, provide

significantly improved parallel I/O performance.

In this paper, we document and hypothesize the

reasons for these non-intuitive results. In particular, we

believe that it is the data aggregation patterns currently

utilized in collective I/O operations, which result in

large, contiguous I/O operations, that are largely

responsible for the poor MPI-IO performance observed

in Lustre file systems. We believe this is problematic

because it redistributes application data in a way that

conforms poorly to Lustre’s object-based storage

architecture. Based on these ideas, we present an

alternative approach, embodied in a user-level library

termed Y-Lib, which, in a collective I/O operation,

redistributes data in a way that more closely conforms to

the Lustre object-based storage architecture. We provide

experimental results, taken across two large-scale Lustre

installations, showing that this alternative approach to

collective I/O operations does, in fact, provide

significantly enhanced parallel I/O performance.

This research is performed within the context of

ROMIO [20], a high-performance implementation of the

MPI-IO standard developed and maintained at Argonne

National Laboratory. There are three reasons for

choosing ROMIO as the parallel I/O implementation

with which we compare our approach: It is generally

regarded as the most widely used implementation of

MPI-IO, it is highly portable, and it provides a powerful

parallel I/O infrastructure that can be leveraged in this

research.

In this paper, we investigate the performance of

collective write operations implemented in ROMIO on

two large-scale Lustre installations: Ranger, located at

the University of Texas Advanced Computing Center,

and BigRed, which is located at Indiana University. We

focus on the collective write operations because they

represent one of the most important parallel I/O

optimisations defined in the MPI-IO standard and

because they have been identified as exhibiting

particularly poor performance in Lustre file systems.

This paper makes two primary contributions. First, it

increases our understanding of the interactions between

collective I/O optimisations in a very important

implementation of the MPI-IO standard, the underlying

assumptions upon which these optimisations are based,

and the Lustre architecture. Second, it shows how the

implementation of collective I/O operations can be more

closely aligned with Lustre’s object-based storage

architecture, resulting in up to a 1000% increase in

performance. We believe this paper will be of interest to

a large segment of the high-performance computing and

Grid communities given the importance of both MPI-IO

and Lustre to large-scale, scientific computing.

The rest of this paper is organized as follows. In

Section 2, we provide background information on MPI-

IO and collective I/O operations. In Section 3, we

discuss the Lustre object-based storage architecture. In

Section 4, we provide our experimental design and

results. In Section 5, we discuss related work, and we

provide our conclusion and future research in Section 6.

2. Background

The I/O requirements of parallel, data-intensive

applications have become the major bottleneck in many

areas of scientific computing. Historically, the reason for

such poor performance has been the I/O access patterns

exhibited by scientific applications. In particular, it has

been well established that each process tends to make a

large number of small I/O requests, incurring the high

overhead of performing I/O across a network with each

such request [9, 11, 19]. However, it is often the case

that taken together, the processes are performing large,

contiguous I/O operations, which historically have made

much better use of the parallel I/O hardware.

 MPI-IO [5], the I/O component of the MPI2 standard,

was developed (in part at least) to take advantage of

such global information to enhance parallel I/O

performance. One of the most important mechanisms

through which such global information can be obtained

and leveraged is a set of collective I/O operations, where

each process provides to the implementation information

about its individual I/O request. The rich and flexible

parallel I/O API defined in MPI-IO facilitates collective

operations by enabling the individual processes to

express complex parallel I/O access patterns in a single

request (e.g., non-contiguous access patterns). Once the

implementation has a picture of the global I/O request, it

can combine the individual requests and submit them in

a way that optimises the particular parallel I/O

subsystem.

It is generally agreed that the most widely used

implementation of the MPI-IO standard is ROMIO [20],

which is integrated into the MPICH2 MPI library

developed and maintained at Argonne National

Laboratory. ROMIO provides key optimisations for

enhanced performance, and is implemented on a wide

range of architectures and file systems.

The portability of ROMIO stems from an internal

layer called ADIO [16] upon which ROMIO implements

the MPI-IO interface. ADIO implements the file system

dependent features, and is thus implemented separately

for each file system.

ROMIO implements the collective I/O operations

using a technique termed two-phase I/O [18, 20].

Consider a collective write operation. In the first phase,

the processes exchange their individual I/O requests to

determine the global request. The processes then use

inter-process communication to re-distribute the data to

a set of aggregator processes. The data is re-distributed

such that each aggregator process has a large,

contiguous chunk of data that can be written to the file

system in a single operation. The parallelism comes

from the aggregator processes performing their writes

concurrently. This is successful because it is

significantly more expensive to write to the file system

than it is to perform inter-process communication.

 To help clarify these ideas, consider the following

example. Assume an SPMD computation where each

process computes over a different region of a two-

dimensional file (16 x 16 array of integers). Further,

assume there are four compute nodes, four I/O nodes,

and that each process has a 4 x 4 sub-array. The array is

stored on disk in row-major order with a stripe unit

equal to one row of the array. Also, the array is

distributed among the processes in a block-block

distribution as shown in Figure 1.

Assume each process is ready to write its data to disk

and enters into a collective write operation. In the first

phase, the processes exchange information about their

individual requests to determine the aggregate I/O

request, and determine the best strategy for writing the

data to disk. In this case, it is determined to be optimal

for each process to write a single row of the array to disk

in parallel. To implement this strategy, process P0 must

send array elements (1, 0) and (1, 1) to process P1, and

must receive elements (0, 2) and (0, 3) from process P1.

The exchanges between processes P2 and P3 are similar.

Once each process receives the data it needs, they write

their portion of the data to disk in one I/O request in

parallel (note that in this example each process is an

aggregator).

We further explore collective write operations in the

sections that follow.

3. Lustre Architecture

Lustre consists of three primary components: file system

clients (that request I/O services), object storage servers

(OSSs) (that provide I/O services), and meta-data

servers that manage the name space of the file system.

Each OSS can support multiple Object Storage Targets

(OSTs) that handle the duties of object storage and

management. The scalability of Lustre is derived from

two primary sources. First, file meta-data operations are

de-coupled from file I/O operations. The meta-data is

stored separately from the file data, and once a client has

obtained the meta-data it communicates directly with the

OSSs in subsequent I/O operations. This provides

significant parallelism because multiple clients can

interact with multiple storage servers in parallel. The

second driver for scalable performance is the striping of

files across multiple OSTs, which provides parallel

access to shared files by multiple clients.

Lustre provides APIs allowing the application to set

the stripe size, the number of OSTs across which the file

will be striped (the stripe width), the index of the OST in

which the first stripe will be stored, and to retrieve the

striping information for a given file. The stripe size is set

when the file is opened and cannot be modified once set.

Lustre assigns stripes to OSTs in a round-robin fashion,

beginning with the designated OST index.

The POSIX file consistency semantics are enforced

through a distributed locking system, where each OST

acts as a lock server for the objects it controls [10]. The

locking protocol requires that a lock be obtained before

any file data can be modified or written into the client-

side cache. While the Lustre documentation states that

the locking mechanism can be disabled for higher

performance [4], we have never observed such

improvement by doing so.

Previous research efforts with parallel I/O on the

Lustre file system have shed some light on factors

contributing to the poor performance of MPI-IO,

including the problems caused by I/O accesses that are

not aligned on stripe boundaries [13, 14]. Figure 2 helps

to illustrate the problem that arises when I/O accesses

cross stripe boundaries.

Assume the two processes are writing to non-

overlapping sections of the file; however because the

requests are not aligned on stripe boundaries, both

processes are accessing different regions of stripe 1.

Because of Lustre’s locking protocol, each process must

acquire the lock associated with the stripe, which results

in unnecessary lock contention. Thus the writes to stripe

1 must be serialized, resulting in suboptimal

performance.

Figure 1. Example system with (a) four compute processors and

four I/O processors and (b) a 4x4 array partitioned in block-

block order.

IOP0 IOP1

IOP2

IOP3

P0

P1

P2

P3

Inter-processor

Communication

Network

0 1 2 3

0

1

2

3

P0 P1

P2 P3

 Figure 2: Crossing Stripe Boundaries with Lustre

An ADIO driver for Lustre has recently been added to
ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This
new Lustre driver adds support via hints for user settable
features such as Lustre striping and direct I/O. In addition, the
driver insures that disk accesses are aligned on Lustre stripe
boundaries.

3.1 Data Aggregation Patterns

While the issues addressed by the new ADIO driver are

necessary for high-performance parallel I/O in Lustre,

they are not, in our view, sufficient. This is because they

do not address the problems arising from multiple

aggregator processes making large, contiguous I/O

requests concurrently. This point may be best explained

through a simple example.

Consider a two-phase collective write operation with

the following parameters: four aggregator processes, a

32 MB file, a stripe size of 1 MB, eight OSTs, and a

stripe width of eight. Assume the four processes have

completed the first phase of the collective write

operation, and that each process is ready to write a

contiguous eight MB block to disk. Thus, process P0

will write stripes 0 – 7, process P1 will write stripes 8 –

15, and so forth. This communication pattern is shown

in Figure 3.

Two problems become apparent immediately. First,

every process is communicating with every OSS.

Second, every process must obtain eight locks. Thus

there is significant communication overhead (each

process and each OSS must multiplex four separate,

concurrent communication channels), and there is

contention at each lock manager for locking services

(but not for the locks themselves). While this is a trivial

example, one can imagine significant degradation in

performance as the file size, number of processes, and

number of OSTs becomes large. Thus, a primary flaw in

the assumption that performing large, contiguous I/O

operations provides the best parallel I/O performance is

that it does not account for the contention of file system

and network resources.

Figure 3: Communication pattern for two-phase I/O with

Lustre.

3.2 Aligning Data with the Lustre Object Storage

Model

The aggregation pattern shown in Figure 3 is what we

term an all-to-all OST pattern because it involves all

aggregator processes communicating will all OSTs. The

simplest approach to reducing contention caused by such

aggregation patterns is to limit the number of OSTs

across which a file is striped. In fact, the generally

recommended (and often the default) stripe width is four.

While this certainly reduces contention, it also severely

limits the parallelism of file accesses, which, in turn,

limits parallel I/O performance. However, we believe it

is possible to both reduce contention and maintain a high

degree of parallelism, by implementing an alternative

data aggregation pattern. This is accomplished via a

user-level library termed Y-lib.

The basic idea behind Y-Lib is to minimize the

number of OSTs with which a given aggregator process

communicates. In particular, it seeks to redistribute data

in what we term a “one-to-one” OST pattern, where the

data is arranged such that each aggregator process

communicates with exactly one OST. Once the data is

redistributed in this fashion, each process performs a

series of non-contiguous I/O operations (in parallel) to

write the data to disk.

A simple example should help clarify these ideas.
Assume there are four application processes that share a

16 MB file with a stripe size of 1 MB and a stripe width

of four (i.e., it is striped across four OSTs). Given these

parameters, Lustre distributes the 16 stripes across the

four OSTs in a round-robin pattern as shown in Figure 4.

Thus stripes 0, 4, 8, and 12 are stored on OST 0, stripes

1, 5, 9, and 13 are stored on OST 1, and so forth.

Process P0 Process P1 Process P2 Process P3

0 8

16 24

OSS

OSS

OSS

OSS

7 15

23 31
6 14

22 30
5 13

21 29
4 12

20 28

3 11

19 27

2 10

18 26
1 9

17 25

 OST 0 OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7

Process 0

Stripe 0 Stripe 1

OST 2

Stripe 2

Process 1

OST 1

OST 0

Figure 4: Lustre File Layout

Figure 5(a) shows how the data would be distributed

to the aggregator processes in what is termed the

conforming distribution, where each process can write

its data to disk in a single, contiguous I/O operation.

This is the distribution pattern that results from the first

phase of ROMIO’s collective write operations, and it is

based on the assumption that performing large,

contiguous I/O operations provides optimal parallel I/O

performance.

Figure 5(a): Each process has its data in the Conforming

Distribution.

Figure 5(b) shows how the same data would be

distributed by Y-Lib to create the one-to-one OST

pattern. As can be seen, the data is rearranged to reflect

the way it is striped across the individual OSTs,

resulting in each process having to communicate with

only a single OST.

Figure 5(b): The one-to-one OST pattern

3.3 Tradeoffs in the Redistribution Patterns

It is interesting to consider the trade-offs in these two

approaches. When the data is redistributed to the

conforming distribution, each process can write its data

to disk in a single, contiguous, I/O operation. However,

this creates a great deal of background activity as the file

system client must communicate with all OSTs. In the

one-to-one OST distribution, there is significantly less

contention for system resources, but each process must

perform a (potentially) large number of small I/O

requests, with a disk seek between each such request.

Thus the relative performance of the two approaches

is determined by the particular overhead costs associated

with each. In the following sections, we provide

extensive experimentation showing that the costs

associated with contention for system resources (OSTs,

lock managers, network) significantly dominates the

cost of performing multiple, small, and non-contiguous

I/O operations.

4. Experimental Design

We were interested in the impact of the data aggregation

patterns on the throughput obtained when performing a

collective write operation in a Lustre file system. To

investigate this issue, we performed a set of experiments

on two large-scale Lustre file systems, at two different

research facilities on the TeraGrid [8]: Indiana

University and the Texas Advanced Computing Center

at the University of Texas.

OST 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P0

P1

P2

P3

OST 2 OST 3 OST 4

OST 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

OST 2 OST 3 OST 4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P0 P1 P2 P3

OST 1 OST 2 OST 3 OST 4

At Indiana University, we used the Big Red cluster

that consisted of 768 IBM JS21 Blades, each with two

dual-core PowerPC 970 MP processors and 8 GB of

memory. The compute nodes were connected to Lustre

through 24 Myricom 10-Gigabit Ethernet cards. The

Lustre file system (Data Capacitor) was mounted on Big

Red, and consisted of 52 Dell servers running Red Hat

Enterprise Linux, 12 DataDirect Networks S29550, and

30 DataDirect Networks 48 bay SATA disk chassis, for

a capacity of 535 Terabytes. There were a total of 96

OSTs on the Data Capacitor, and there was a total

aggregate transfer rate was 14.5 Gigabits per second.

The MPI implementation used on BigRed was MPICH2.

The other Lustre installation was Ranger, located at

the Texas Advanced Computing Center (TACC) at the

University of Texas. There are 3,936 SunBlade x6420

blade nodes on Ranger, each of which contains four

quad-core AMD Opteron processors for a total of 62,976

cores. Each blade is running a 2.6.18.8 x86_64 Linux

kernel from kernel.org. The Lustre parallel file system

was built on 72 Sun x4500 disk servers, each containing

48 SATA drives for an aggregate storage capacity of

1.73 Petabytes. On the Scratch file system used in these

experiments, there were 50 OSSs, each of which hosted

six OSTs, for a total of 300 OSTs. The bottleneck in the

system was a 1-Gigabyte per second throughput from

the OSSs to the network.

It is important to note that the experimental

environment is quite different on these two systems.

BigRed has a smaller number of nodes (768 versus

3,936), and a significantly longer maximum runtime

(two days to two weeks on BigRed versus 24 hours on

Ranger). This resulted in very lengthy queues, where the

number of waiting jobs often exceeded one thousand

and was rarely less than seven hundred. Thus it was

difficult to obtain a large number of nodes, and the time

between experiments could be quite large, often taking

between four days and one week.

For these reasons, we were able to complete a larger

set of experiments, with a larger number of processes

and OSTs, on Ranger than we were on BigRed. We thus

begin by discussing our results on Ranger.

4.1 Experimental Study on Ranger

We varied three key parameters in the experiments

conducted on Ranger: The implementation of the

collective I/O operation, the number of processors that

participated in the operation, and the file size. In

particular, we varied the number of processors from 128

to 1024, where each processor wrote one Gigabyte of

data to disk. Thus the file size varied between 128

Gigabytes and one Terabyte. We kept the number of

OSTs constant at 128, and maintained a stripe size of

one MB. Each data point represents the mean value of

50 trials taken over a five-day period.

4.1.1 Data Aggregation Patterns with Redistribution

In this set of experiments, we assigned the data to the

processors in a way that required it to be redistributed to

reach the desired aggregation pattern. Thus, in the case

of MPI-IO, we set a file view for each process that

specified the one-to-one OST pattern, and set the hint to

use two-phase I/O to carry out the write operation.

Similarly, we assigned the data to the processors in the

conforming distribution, and made a collective call to Y-

Lib to redistribute the data to the one-to-one OST

pattern. Once Y-Lib completed the data redistribution, it

wrote the data to disk using independent (but concurrent)

write operations.

4.1.2 Data Aggregation Patterns without

Redistribution

The next set of experiments assumed the data was

already assigned to the processors in the required

distribution. Thus in the case of MPI-IO, the processors

performed the collective MPI_File_write_at_all

operation, and passed to the function a contiguous one

Gigabyte data buffer. Thus there was no need to perform

data redistribution, but we disabled two-phase I/O

nonetheless to ensure fairness. In the case of Y-Lib, the

data redistribution phase was not executed, and each

process performed the independent write operations

assuming the data was already in the one-to-one pattern.

4.1.3 MPI-IO Write Strategies

The final set of experiments was designed to determine

if we could improve the performance of MPI itself by

forcing it to use the one-to-one OST pattern with

independent writes. We accomplished this by setting a

file view specifying the one-to-one OST pattern, and

disabling both two-phase I/O and data sieving. We then

compared the performance of this approach with that of

MPI-IO assuming the conforming distribution, and MPI-

IO assuming the one-to-one OST distribution using two-

phase I/O.

4.2 Experimental Results

The experimental results are shown in Figures 6, 7, and

8. Figure 6 shows the throughput obtained when Y-Lib

started with the data in the conforming distribution, used

message passing to put it into the one-to-one OST

distribution, and then wrote the data to disk with

multiple, POSIX write operations. This is compared to

the throughput obtained by the MPI-IO

MPI_File_write_all operation when the data is initially

placed in the one-to-one OST pattern. As can be seen,

Y-Lib improves I/O performance by up to a factor of ten.

This is particularly impressive given that each process

performed 1024 independent write operations.

Figure 6: Data aggregation patterns without redistribution

Figure 7 shows the throughput obtained assuming the

optimal data distribution for each approach. That is, the

data was in the conforming distribution for MPI-IO, and

in the one-to-one OST distribution for Y-Lib. Thus

neither approach required the redistribution of data. As

can be seen, the one-to-one pattern, which required 1024

independent write operations, significantly outperformed

the MPI_File_write_at_all operation, where each

process wrote a contiguous one Gigabyte buffer to disk.

In this case, Y-Lib improved performance by up to a

factor of three.

Figure 7:Data aggregation patterns with redistribution

Figure 8 depicts the performance of three different MPI-

IO collective operations. It includes the two previously

described approaches, and compares them with the

performance of MPI-IO when it was forced to use

independent writes. As can be seen, we were able to

increase the performance of MPI-IO itself by over a

factor of two, by forcing it to use the one-to-one OST

pattern.

Figure 8: Comparison of MPI write strategies

4.3 Discussion

These results strongly support the hypothesis that MPI-

IO does, in fact, perform very poorly in a Lustre file

system when the all-to-all communication pattern

creates significant contention for system resources. They

also show that it is possible to utilize all of the system

resources quite profitably when utilizing the data

redistribution pattern employed by Y-lib. These results

also lend strong support to other studies on Lustre

showing that maximum performance is obtained when

individual processes write to independent files

concurrently [4, 21]. It also helps explain the commonly

held belief of (at least some) Lustre developers that

parallel I/O is not necessary in a Lustre environment,

and does little to improve performance [2].

4.4 Experimental Studies on BigRed

In our initial exploration of Y-lib on BigRed, we did not

obtain the improvement in I/O performance that we

observed on Ranger. Further investigation revealed that

we were under-utilizing the powerful parallel I//O

subsystem by having each process communicate with

only one OST. We then experimented with other OST

patterns, and found that the best performance was

obtained when each process communicated with exactly

two OSTs (what we term a two-OST pattern). Thus all of

the experiments discussed in this section utilized this

data redistribution pattern. It should also be noted that

we had not yet completed the implementation of the

two-OST redistribution pattern at the time of this

publication, and thus the experiments discussed here

assumed that the data was already in the correct

distribution for each approach.

4.4.1 Data Aggregation Patterns without

Redistribution

In these experiments, we compared the I/O performance

obtained when the data was arranged according to the

conforming distribution or the two-OST distribution. We

varied the number of aggregator processes between 32

and 256, and the stripe width between 32 and 96 (the

maximum number of OSTs available). We scaled the

file size between 32 and 256 Gigabytes (i.e., one

Gigabyte times the number of processes), and, for 32 to

96 processes, set the stripe width equal to the number of

processes. In the case of 192 processes, we utilized 96

OSTs. In the 256-process case however, we utilized only

64 OSTs. This was because the number of processes

must be a multiple of the number of OSTs to ensure that

each process always communicates with the same two

OSTs. In all cases, the stripe size was one Megabyte,

and the writes were aligned on stripe and lock

boundaries.

As noted above, these experiments assumed the data was

in the correct distribution for each approach, and thus

neither performed the first phase of the two-phase I/O

algorithm. When the data was distributed according to

the conforming distribution, the aggregators performed a

single large, contiguous I/O operation. Because of the

two-to-one OST pattern employed by Y-lib, each

process made 512 separate I/O requests.

4.4.2 Experimental Results

The results of these experiments are shown in Figure 9.

As can be seen, the Y-lib distribution pattern starts to

significantly outperform the conforming distribution

once the number of processes exceeds 32. The largest

improvement comes with 96 processes (and OSTs),

where a 36% improvement in performance is observed.

The relative improvement in performance was

approximately 32% with 192 processes (96 OSTs), and

was on the order of 5% in the 256-process case (64

OSTs).

Figure 9. This figure compares I/O performance as a

function of the redistribution pattern.

4.5 Discussion

These results are very different from those obtained on

Ranger, and it is interesting to consider the causes for

such differences. There are really two separate questions:

Why did the performance of ROMIO increase with

increasing numbers of processes, and why did the rate of

performance increases begin to slow for Y-lib in this

scenario? We address each question in turn.
We believe the increasing performance observed on

BigRed was due to the very powerful parallel I/O subsystem

available from the Data Capacitor, combined with an

aggregate bandwidth of 240 Gigabits per second

between the two systems provided by the 24 10-Gigabit

Myricom connections. Clearly, this infrastructure was

powerful enough to handle the all-to-all communication

pattern required by the conforming distribution.

However, the number of processes we were able to test

was relatively small (at least compared to Ranger), and it

would be very interesting to execute the same tests with

512 processes.

The reduction in the rate of increasing performance

observed in Y-lib was, we believe, related to the ratio of

OSTs to aggregator processes. That is, the overhead of

performing a large number of small I/O operations

becomes more pronounced as contention for OSTs and

network services begins to increase. In the case of 256

aggregators and 64 OSTs, each OST is communicating

with eight processes (even though each process is only

communicating with two OSTs). Thus, while the level

of contention in this case is not as significant as that

resulting from the conforming distribution, it is

apparently enough to begin to impact the performance of

Y-lib.

5. Related Work

The most closely related work is from Yu et al. [21],

who implemented the MPI-IO collective write

operations using the Lustre file-join mechanism. In this

approach, the I/O processes write separate, independent

files in parallel, and then merge these files using the

Lustre file-join mechanism. They showed that this

approach significantly improved the performance of the

collective write operation, but that the reading of a

previously joined file resulted in low I/O performance.

As noted by the authors, correcting this poor

performance will require an optimization of the way a

joined file’s extent attributes are managed. The authors

also provide an excellent performance study of MPI-IO

on Lustre.

The approach we are pursuing does not require

multiple independent writes to separate files, but does

limit the number of Object Storage Targets (OST) with

which a given process communicates. This maintains

many of the advantages of writing to multiple

independent files separately, but does not require the

joining of such files. The performance analysis

presented in this paper complements and extends the

analysis performed by Yu et al.

Larkin and Fahey [12] provide an excellent analysis

of Lustre’s performance on the Cray XT3/XT4, and,

based on such analysis, provide some guidelines to

maximize I/O performance on this platform. They

observed, for example, that to achieve peak performance

it is necessary to use large buffer sizes, to have at least

as many IO processes as OSTs, and, that at very large

scale (i.e., thousands of clients), only a subset of the

processes should perform I/O. While our research

reaches some of the same conclusions on different

architectural platforms, there are two primary

distinctions. First, our research is focused on

understanding of the poor performance of MPI-IO (or,

more particularly, ROMIO) in a Lustre environment,

and on implementing a new ADIO driver for object-

based file systems such as Lustre. Second, our research

is investigating both contiguous and non-contiguous

access patterns while this related work focuses on

contiguous access patterns only.

In [14], it was shown that aligning the data to be

written with the basic striping pattern improves

performance. They also showed that it was important to

align on lock boundaries. This is consistent with our

analysis, although we expand the scope of the analysis

significantly to study the algorithms used by MPI-IO

(ROMIO) and determine (at least some of) the reasons

for sub-optimal performance.

6. Conclusions and Future Research

This research was motivated by the fact that MPI-IO has

been shown to perform poorly in a Lustre environment,

the reasons for which have been heretofore largely

unknown. We hypothesized that the problem was related

to the way the data was redistributed in the first phase of

a two-phase I/O operation, resulting in an all-to-all

communication pattern that can cause (perhaps

significant) contention for system resources. We then

implemented a new (and non-intuitive) data

redistribution pattern that significantly reduced such

contention. This new approach was embodied in a user-

level library termed Y-Lib, which was shown to

outperform the current implementation of ROMIO by up

to a factor of ten.

However, the performance decrease observed on

Ranger when going from 512 to 1024 processes, coupled

with the relatively small increase in performance when

going from 192 to 256 processes on BigRed, indicate

that the ratio of processes to OSTs is an important factor

in the performance of Y-lib. Thus one area of current

research is the development of an analytical model that

can predict when a one- or two-OST pattern will likely

lead to improved I/O performance as a function of

system resources. Similarly, such a model could help

determine when (and if) the parallel I/O implementation

should change the data redistribution pattern

dynamically. The other primary focus of current

research is the integration of Y-lib into ROMIO.

References

[1]. Cluster File Systems, Inc.

 http://www.clustrefs.com

[2]. Frequently Asked Questions.

 http://www.lustre.org

[3]. I/O Performance Project

 http://wiki.lustre.org/index.php?title=IOPerform

anceProject

[4]. Lustre: scalable, secure, robust, highly-available

cluster file system. An offshoot of AFS, CODA,

and Ext2.

 www.lustre.org/

[5]. MPI-2: Extensions to the Message-Passing

Interface. Message Passing Interface Forum

 http://www.mpi-forum.org/docs/mpi-20-

html/mpi2-report.html

[6]. MPICH2 Home Page

 http://www.mcs.anl.gov/mpi/mpich

[7]. The Panasas Home Page.

 http://www.panasas.com

[8]. The Teragrid Project

 http://www.teragrid.org

[9]. Avery Ching, Choudhary, A., Coloma, K., Liao,

W.-k., et al., Noncontiguous I/O Accesses

through MPI-IO. In the Proceedings of the Third

International Symposium on Cluster Computing

and the Grid (CCGrid), (2002), 104-111.

[10]. Bramm, P.J. The Lustre Storage Architecture

 http://www.lustre.org

[11]. Isaila, F. and Tichy, W.F., View I/O: improving

the performance of non-contiguous I/O. In the

Proceedings of the IEEE Cluster Computing

Conference, (Hong Kong).

[12]. Larkin, J. and Fahey, M. Guidelines for

Efficient Parallel I/O on the Cray XT3/XT4

CUG 2007, 2007.

[13]. Liao, W.-k., Ching, A., Coloma, K., Choudhary,

A., et al., Iproving MPI Independent Write

Performance Using A Two-Stage Write-Behind

Buffering Method. . In the Proceedings of the

Next Generation Software (NGS) Workshop,

(2007).

[14]. Liao, W.-k., Ching, A., Coloma, K., Choudhary,

A., et al., An Implementation and Evaluation of

Client-Side File Caching for MPI-IO. In the

Proceedings of the International Parallel and

Distried Processing Symposium (IPDPS '07),

(2007).

[15]. Schmuck, F. and Haskin, R., GPFS: A shared-

disk file system for large computing clusters. .

In the Proceedings of the Conference on File

and Storage Technologies, (IBM Almaden

Research Center, San Jose, California).

[16]. Thakur, R., Gropp, W. and Lusk, E., An

Abstract-Device Interface for Implementing

Portable Parallel-I/O Interfaces. In the

Proceedings of the Proc. of the 6th Symposium

on the Frontiers of Massively Parallel

Computation.

[17]. Thakur, R., Gropp, W. and Lusk, E., Data

Sieving and Collective I/O in ROMIO. In the

Proceedings of the Proc. of the 7th Symposium

on the Frontiers of Massively Parallel

Computation, 182-189.

[18]. Thakur, R., Gropp, W. and Lusk, E., On

Implementing MPI-IO Portably and with High

Performance. In the Proceedings of the Proc. of

the Sixth Workshop on I/O in Parallel and

Distributed Systems, 23-32.

[19]. Thakur, R., Gropp, W. and Lusk, E. Optimizing

Noncontiguous Accesses in MPI-IO. Parallel

Computing, 28 (1). 83-105. January, 2002.

[20]. Thakur, R., Ross, R. and Gropp, W. Users

Guide for ROMIO: A High-Performance,

Portable MPI-IO Implementation, Technical

Memorandum ANL/MCS-TM-234,

Mathematics and Computer Science Division,

Argonne National Laboratory, Revised May

2004.

[21]. Yu, W., Vetter, J., Canon, R.S. and Jiang, S.,

Exploiting Lustre File Joining for Effective

Collective I/O In the Proceedings of the Seventh

IEEE International Symposium on Cluster

Computing and the Grid (CCGrid '07), (2007).

