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Abstract— It is often the case that MPI-IO performs poorly 

in a Lustre file system environment, although the reasons for 

such performance are not currently well understood. We 

hypothesize that such performance is a direct result of the 

fundamental assumptions upon most parallel I/O optimisations 

are based. In particular, it is almost universally believed that 

parallel I/O performance is optimised when aggregator 

processes perform large, contiguous I/O operations in parallel. 

Our research, however, shows that this approach can actually 

provide the worst performance in a Lustre environment, and 

that the best performance may be obtained by performing a 

large number of small, non-contiguous I/O operations. In this 

paper, we first demonstrate and explain these non-intuitive 

results. We then present a user-level library, termed Y-lib, 

which redistributes data in a way that conforms much more 

closely with the Lustre storage architecture than does the data 

redistribution pattern employed by MPI-IO. We then provide 

experimental results showing that Y-lib can significantly 

increase I/O performance, the degree to which is a function of  

the number of aggregator processes and Object Storage 

Targets, and the communication infrastructure of the system.  
 

1.   Introduction 

 

Large-scale computing clusters are being increasingly 

utilized to execute large, data-intensive applications in 

several scientific domains. Such domains include high-

resolution simulation of natural phenomenon, large-scale 

image analysis, climate modelling, and complex 

financial modelling. The I/O requirements of such 

applications can be staggering, ranging from terabytes to 

petabytes, and managing such massive data sets has 

become a significant bottleneck in parallel application 

performance.  

This issue has led to the development of powerful 

parallel file systems that can provide tremendous 

aggregate storage capacity with highly concurrent access 

to the underlying data (e.g., Lustre [1], GPFS [15], 

Panasas [7]). This issue has also led to the development 

of parallel I/O interfaces with high-performance 

implementations that can interact with the file system 

API to optimise access to the underlying storage. An 

important combination of file system/parallel I/O 

interface is Lustre, an object-based, parallel file system 

developed for extreme-scale computing clusters, and 

MPI-IO [5], the most widely-used parallel I/O API. The 

problem, however, is that there is currently no 

implementation of the MPI-IO standard that is optimised 

for the Lustre file system, and the performance of 

current implementations is, by and large, quite poor [3, 

12, 21]. Given the wide spread use of MPI-IO, and the 

expanding utilization of the Lustre file system, it is 

critical to provide an MPI-IO implementation that can 

provide high-performance, scalable I/O to MPI 

applications executing in this environment.  

There are two key challenges associated with 

achieving high performance with MPI-IO in a Lustre 

environment. First, Lustre exports only the POSIX file 

system API, which was not designed for a parallel I/O 

environment and provides little support for parallel I/O 

optimisations. This has led to the development of 

approaches (or “workarounds”) that can circumvent (at 

least some of) the performance problems inherent in 

POSIX-based file systems (e.g., two-phase I/O [17, 18], 

and data-sieving[20]). The second problem is that the 

assumptions upon which these optimisations are based 

simply do not hold in a Lustre environment. 

The most important and widely held assumption, and 

the one upon which most collective I/O optimisations 

are based, is that parallel I/O performance is optimised 

when application processes perform a small number of 

large, contiguous (non-overlapping) I/O operations 

concurrently. In fact, this is the assumption upon which 

collective I/O operations are based.  The research 

presented in this paper, however, shows that this 

assumption can lead to very poor I/O performance in a 

Lustre file system environment.  Moreover, we provide a 

large set of experimental results showing that the 

antithesis of this approach, where each aggregator 

process performs a large number of small (non-

contiguous) I/O operations, can, when properly aligned 

with the Lustre storage architecture, provide 

significantly improved parallel I/O performance.  

In this paper, we document and hypothesize the 

reasons for these non-intuitive results. In particular, we 

believe that it is the data aggregation patterns currently 



utilized in collective I/O operations, which result in 

large, contiguous I/O operations, that are largely 

responsible for the poor MPI-IO performance observed 

in Lustre file systems. We believe this is problematic 

because it redistributes application data in a way that 

conforms poorly to Lustre’s object-based storage 

architecture. Based on these ideas, we present an 

alternative approach, embodied in a user-level library 

termed Y-Lib, which, in a collective I/O operation, 

redistributes data in a way that more closely conforms to 

the Lustre object-based storage architecture. We provide 

experimental results, taken across two large-scale Lustre 

installations, showing that this alternative approach to 

collective I/O operations does, in fact, provide 

significantly enhanced parallel I/O performance.  

This research is performed within the context of 

ROMIO [20], a high-performance implementation of the 

MPI-IO standard developed and maintained at Argonne 

National Laboratory. There are three reasons for 

choosing ROMIO as the parallel I/O implementation 

with which we compare our approach:  It is generally 

regarded as the most widely used implementation of 

MPI-IO, it is highly portable, and it provides a powerful 

parallel I/O infrastructure that can be leveraged in this 

research.  

In this paper, we investigate the performance of 

collective write operations implemented in ROMIO on 

two large-scale Lustre installations: Ranger, located at 

the University of Texas Advanced Computing Center, 

and BigRed, which is located at Indiana University. We 

focus on the collective write operations because they 

represent one of the most important parallel I/O 

optimisations defined in the MPI-IO standard and 

because they have been identified as exhibiting 

particularly poor performance in Lustre file systems.  

This paper makes two primary contributions. First, it 

increases our understanding of the interactions between 

collective I/O optimisations in a very important 

implementation of the MPI-IO standard, the underlying 

assumptions upon which these optimisations are based, 

and the Lustre architecture. Second, it shows how the 

implementation of collective I/O operations can be more 

closely aligned with Lustre’s object-based storage 

architecture, resulting in up to a 1000% increase in 

performance. We believe this paper will be of interest to 

a large segment of the high-performance computing and 

Grid communities given the importance of both MPI-IO 

and Lustre to large-scale, scientific computing.  

The rest of this paper is organized as follows. In 

Section 2, we provide background information on MPI-

IO and collective I/O operations. In Section 3, we 

discuss the Lustre object-based storage architecture. In 

Section 4, we provide our experimental design and 

results. In Section 5, we discuss related work, and we 

provide our conclusion and future research in Section 6. 
 
2. Background 

 

The I/O requirements of parallel, data-intensive 

applications have become the major bottleneck in many 

areas of scientific computing. Historically, the reason for 

such poor performance has been the I/O access patterns 

exhibited by scientific applications. In particular, it has 

been well established that each process tends to make a 

large number of small I/O requests, incurring the high 

overhead of performing I/O across a network with each 

such request [9, 11, 19]. However, it is often the case 

that taken together, the processes are performing large, 

contiguous I/O operations, which historically have made 

much better use of the parallel I/O hardware.  

   MPI-IO [5], the I/O component of the MPI2 standard, 

was developed (in part at least) to take advantage of 

such global information to enhance parallel I/O 

performance. One of the most important mechanisms 

through which such global information can be obtained 

and leveraged is a set of collective I/O operations, where 

each process provides to the implementation information 

about its individual I/O request. The rich and flexible 

parallel I/O API defined in MPI-IO facilitates collective 

operations by enabling the individual processes to 

express complex parallel I/O access patterns in a single 

request (e.g., non-contiguous access patterns). Once the 

implementation has a picture of the global I/O request, it 

can combine the individual requests and submit them in 

a way that optimises the particular parallel I/O 

subsystem.  

It is generally agreed that the most widely used 

implementation of the MPI-IO standard is ROMIO [20], 

which is integrated into the MPICH2 MPI library 

developed and maintained at Argonne National 

Laboratory. ROMIO provides key optimisations for 

enhanced performance, and is implemented on a wide 

range of architectures and file systems.  

The portability of ROMIO stems from an internal 

layer called ADIO [16] upon which ROMIO implements 

the MPI-IO interface. ADIO implements the file system 

dependent features, and is thus implemented separately 

for each file system.  

ROMIO implements the collective I/O operations 

using a technique termed two-phase I/O [18, 20]. 

Consider a collective write operation. In the first phase, 

the processes exchange their individual I/O requests to 

determine the global request. The processes then use 

inter-process communication to re-distribute the data to 



a set of aggregator processes. The data is re-distributed 

such that each aggregator process has a large, 

contiguous chunk of data that can be written to the file 

system in a single operation. The parallelism comes 

from the aggregator processes performing their writes 

concurrently. This is successful because it is 

significantly more expensive to write to the file system 

than it is to perform inter-process communication.  

     To help clarify these ideas, consider the following 

example. Assume an SPMD computation where each 

process computes over a different region of a two-

dimensional file (16 x 16 array of integers). Further, 

assume there are four compute nodes, four I/O nodes, 

and that each process has a 4 x 4 sub-array. The array is 

stored on disk in row-major order with a stripe unit 

equal to one row of the array. Also, the array is 

distributed among the processes in a block-block 

distribution as shown in Figure 1.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Assume each process is ready to write its data to disk 

and enters into a collective write operation. In the first 

phase, the processes exchange information about their 

individual requests to determine the aggregate I/O 

request, and determine the best strategy for writing the 

data to disk. In this case, it is determined to be optimal 

for each process to write a single row of the array to disk 

in parallel. To implement this strategy, process P0 must 

send array elements (1, 0) and (1, 1) to process P1, and 

must receive elements (0, 2) and (0, 3) from process P1. 

The exchanges between processes P2 and P3 are similar. 

Once each process receives the data it needs, they write 

their portion of the data to disk in one I/O request in 

parallel (note that in this example each process is an 

aggregator).  

We further explore collective write operations in the 

sections that follow. 

3.  Lustre Architecture 
 

Lustre consists of three primary components: file system 

clients (that request I/O services), object storage servers 

(OSSs) (that provide I/O services), and meta-data 

servers that manage the name space of the file system. 

Each OSS can support multiple Object Storage Targets 

(OSTs) that handle the duties of object storage and 

management. The scalability of Lustre is derived from 

two primary sources. First, file meta-data operations are 

de-coupled from file I/O operations. The meta-data is 

stored separately from the file data, and once a client has 

obtained the meta-data it communicates directly with the 

OSSs in subsequent I/O operations. This provides 

significant parallelism because multiple clients can 

interact with multiple storage servers in parallel. The 

second driver for scalable performance is the striping of 

files across multiple OSTs, which provides parallel 

access to shared files by multiple clients.  

Lustre provides APIs allowing the application to set 

the stripe size, the number of OSTs across which the file 

will be striped (the stripe width), the index of the OST in 

which the first stripe will be stored, and to retrieve the 

striping information for a given file. The stripe size is set 

when the file is opened and cannot be modified once set. 

Lustre assigns stripes to OSTs in a round-robin fashion, 

beginning with the designated OST index.  

The POSIX file consistency semantics are enforced 

through a distributed locking system, where each OST 

acts as a lock server for the objects it controls [10]. The 

locking protocol requires that a lock be obtained before 

any file data can be modified or written into the client-

side cache. While the Lustre documentation states that 

the locking mechanism can be disabled for higher 

performance [4], we have never observed such 

improvement by doing so.  

Previous research efforts with parallel I/O on the 

Lustre file system have shed some light on factors 

contributing to the poor performance of MPI-IO, 

including the problems caused by I/O accesses that are 

not aligned on stripe boundaries [13, 14]. Figure 2 helps 

to illustrate the problem that arises when I/O accesses 

cross stripe boundaries.  

Assume the two processes are writing to non-

overlapping sections of the file; however because the 

requests are not aligned on stripe boundaries, both 

processes are accessing different regions of stripe 1. 

Because of Lustre’s locking protocol, each process must 

acquire the lock associated with the stripe, which results 

in unnecessary lock contention. Thus the writes to stripe 

1 must be serialized, resulting in suboptimal 

performance. 

Figure 1. Example system with (a) four compute processors and 

four I/O processors and (b) a 4x4 array partitioned in block-

block order.  
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        Figure 2: Crossing Stripe Boundaries with Lustre 
 

An ADIO driver for Lustre has recently been added to 
ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This 
new Lustre driver adds support via hints for user settable 
features such as Lustre striping and direct I/O. In addition, the 
driver insures that disk accesses are aligned on Lustre stripe 
boundaries.  

 

3.1 Data Aggregation Patterns 
 

While the issues addressed by the new ADIO driver are 

necessary for high-performance parallel I/O in Lustre, 

they are not, in our view, sufficient. This is because they 

do not address the problems arising from multiple 

aggregator processes making large, contiguous I/O 

requests concurrently. This point may be best explained 

through a simple example.  

Consider a two-phase collective write operation with 

the following parameters: four aggregator processes, a 

32 MB file, a stripe size of 1 MB, eight OSTs, and a 

stripe width of eight. Assume the four processes have 

completed the first phase of the collective write 

operation, and that each process is ready to write a 

contiguous eight MB block to disk. Thus, process P0 

will write stripes 0 – 7, process P1 will write stripes 8 – 

15, and so forth. This communication pattern is shown 

in Figure 3.  

Two problems become apparent immediately. First, 

every process is communicating with every OSS. 

Second, every process must obtain eight locks. Thus 

there is significant communication overhead (each 

process and each OSS must multiplex four separate, 

concurrent communication channels), and there is 

contention at each lock manager for locking services 

(but not for the locks themselves). While this is a trivial 

example, one can imagine significant degradation in 

performance as the file size, number of processes, and 

number of OSTs becomes large. Thus, a primary flaw in 

the assumption that performing large, contiguous I/O 

operations provides the best parallel I/O performance is 

that it does not account for the contention of file system 

and network resources. 

  

Figure 3: Communication pattern for two-phase I/O with 

Lustre. 

 

3.2 Aligning Data with the Lustre Object Storage 

Model 
 

The aggregation pattern shown in Figure 3 is what we 

term an all-to-all OST pattern because it involves all 

aggregator processes communicating will all OSTs. The 

simplest approach to reducing contention caused by such 

aggregation patterns is to limit the number of OSTs 

across which a file is striped. In fact, the generally 

recommended (and often the default) stripe width is four. 

While this certainly reduces contention, it also severely 

limits the parallelism of file accesses, which, in turn, 

limits parallel I/O performance. However, we believe it 

is possible to both reduce contention and maintain a high 

degree of parallelism, by implementing an alternative 

data aggregation pattern. This is accomplished via a 

user-level library termed Y-lib.  

The basic idea behind Y-Lib is to minimize the 

number of OSTs with which a given aggregator process 

communicates. In particular, it seeks to redistribute data 

in what we term a “one-to-one” OST pattern, where the 

data is arranged such that each aggregator process 

communicates with exactly one OST. Once the data is 

redistributed in this fashion, each process performs a 

series of non-contiguous I/O operations (in parallel) to 

write the data to disk.  

A simple example should help clarify these ideas.  
Assume there are four application processes that share a 

16 MB file with a stripe size of 1 MB and a stripe width 

of four (i.e., it is striped across four OSTs). Given these 

parameters, Lustre distributes the 16 stripes across the 

four OSTs in a round-robin pattern as shown in Figure 4. 

Thus stripes 0, 4, 8, and 12 are stored on OST 0, stripes 

1, 5, 9, and 13 are stored on OST 1, and so forth. 
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Figure 4: Lustre File Layout 

Figure 5(a) shows how the data would be distributed 

to the aggregator processes in what is termed the 

conforming distribution, where each process can write 

its data to disk in a single, contiguous I/O operation. 

This is the distribution pattern that results from the first 

phase of ROMIO’s collective write operations, and it is 

based on the assumption that performing large, 

contiguous I/O operations provides optimal parallel I/O 

performance. 

 

Figure 5(a): Each process has its data in the Conforming 

Distribution. 

 

Figure 5(b) shows how the same data would be 

distributed by Y-Lib to create the one-to-one OST 

pattern. As can be seen, the data is rearranged to reflect 

the way it is striped across the individual OSTs, 

resulting in each process having to communicate with 

only a single OST. 

 

Figure 5(b): The one-to-one OST pattern 

 

3.3 Tradeoffs in the Redistribution Patterns 

 

It is interesting to consider the trade-offs in these two 

approaches. When the data is redistributed to the 

conforming distribution, each process can write its data 

to disk in a single, contiguous, I/O operation. However, 

this creates a great deal of background activity as the file 

system client must communicate with all OSTs. In the 

one-to-one OST distribution, there is significantly less 

contention for system resources, but each process must 

perform a (potentially) large number of small I/O 

requests, with a disk seek between each such request.  

Thus the relative performance of the two approaches 

is determined by the particular overhead costs associated 

with each. In the following sections, we provide 

extensive experimentation showing that the costs 

associated with contention for system resources (OSTs, 

lock managers, network) significantly dominates the 

cost of performing multiple, small, and non-contiguous 

I/O operations.  
 

4.  Experimental Design 
 

We were interested in the impact of the data aggregation 

patterns on the throughput obtained when performing a 

collective write operation in a Lustre file system. To 

investigate this issue, we performed a set of experiments 

on two large-scale Lustre file systems, at two different 

research facilities on the TeraGrid [8]: Indiana 

University and the Texas Advanced Computing Center 

at the University of Texas. 
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At Indiana University, we used the Big Red cluster 

that consisted of 768 IBM JS21 Blades, each with two 

dual-core PowerPC 970 MP processors and 8 GB of 

memory. The compute nodes were connected to Lustre 

through 24 Myricom 10-Gigabit Ethernet cards. The 

Lustre file system (Data Capacitor) was mounted on Big 

Red, and consisted of 52 Dell servers running Red Hat 

Enterprise Linux, 12 DataDirect Networks S29550, and 

30 DataDirect Networks 48 bay SATA disk chassis, for 

a capacity of 535 Terabytes. There were a total of 96 

OSTs on the Data Capacitor, and there was a total 

aggregate transfer rate was 14.5 Gigabits per second. 

The MPI implementation used on BigRed was MPICH2.  

The other Lustre installation was Ranger, located at 

the Texas Advanced Computing Center (TACC) at the 

University of Texas. There are 3,936 SunBlade x6420 

blade nodes on Ranger, each of which contains four 

quad-core AMD Opteron processors for a total of 62,976 

cores.  Each blade is running a 2.6.18.8 x86_64 Linux 

kernel from kernel.org. The Lustre parallel file system 

was built on 72 Sun x4500 disk servers, each containing 

48 SATA drives for an aggregate storage capacity of 

1.73 Petabytes. On the Scratch file system used in these 

experiments, there were 50 OSSs, each of which hosted 

six OSTs, for a total of 300 OSTs. The bottleneck in the 

system was a 1-Gigabyte per second throughput from 

the OSSs to the network.  

It is important to note that the experimental 

environment is quite different on these two systems. 

BigRed has a smaller number of nodes (768 versus 

3,936), and a significantly longer maximum runtime 

(two days to two weeks on BigRed versus 24 hours on 

Ranger). This resulted in very lengthy queues, where the 

number of waiting jobs often exceeded one thousand 

and was rarely less than seven hundred. Thus it was 

difficult to obtain a large number of nodes, and the time 

between experiments could be quite large, often taking 

between four days and one week.  

For these reasons, we were able to complete a larger 

set of experiments, with a larger number of processes 

and OSTs, on Ranger than we were on BigRed. We thus 

begin by discussing our results on Ranger. 

4.1 Experimental Study on Ranger 

 

We varied three key parameters in the experiments 

conducted on Ranger: The implementation of the 

collective I/O operation, the number of processors that 

participated in the operation, and the file size. In 

particular, we varied the number of processors from 128 

to 1024, where each processor wrote one Gigabyte of 

data to disk. Thus the file size varied between 128 

Gigabytes and one Terabyte. We kept the number of 

OSTs constant at 128, and maintained a stripe size of 

one MB. Each data point represents the mean value of 

50 trials taken over a five-day period.  
 

4.1.1 Data Aggregation Patterns with Redistribution 
 

In this set of experiments, we assigned the data to the 

processors in a way that required it to be redistributed to 

reach the desired aggregation pattern. Thus, in the case 

of MPI-IO, we set a file view for each process that 

specified the one-to-one OST pattern, and set the hint to 

use two-phase I/O to carry out the write operation. 

Similarly, we assigned the data to the processors in the 

conforming distribution, and made a collective call to Y-

Lib to redistribute the data to the one-to-one OST 

pattern. Once Y-Lib completed the data redistribution, it 

wrote the data to disk using independent (but concurrent) 

write operations.  

 

4.1.2 Data Aggregation Patterns without 

Redistribution 
 

The next set of experiments assumed the data was 

already assigned to the processors in the required 

distribution. Thus in the case of MPI-IO, the processors 

performed the collective MPI_File_write_at_all 

operation, and passed to the function a contiguous one 

Gigabyte data buffer. Thus there was no need to perform 

data redistribution, but we disabled two-phase I/O 

nonetheless to ensure fairness. In the case of Y-Lib, the 

data redistribution phase was not executed, and each 

process performed the independent write operations 

assuming the data was already in the one-to-one pattern.  

 

4.1.3 MPI-IO Write Strategies 
 

The final set of experiments was designed to determine 

if we could improve the performance of MPI itself by 

forcing it to use the one-to-one OST pattern with 

independent writes. We accomplished this by setting a 

file view specifying the one-to-one OST pattern, and 

disabling both two-phase I/O and data sieving. We then 

compared the performance of this approach with that of 

MPI-IO assuming the conforming distribution, and MPI-

IO assuming the one-to-one OST distribution using two-

phase I/O.  

 

 

 

 

 



4.2 Experimental Results  

 

The experimental results are shown in Figures 6, 7, and 

8. Figure 6 shows the throughput obtained when Y-Lib 

started with the data in the conforming distribution, used 

message passing to put it into the one-to-one OST 

distribution, and then wrote the data to disk with 

multiple, POSIX write operations. This is compared to 

the throughput obtained by the MPI-IO 

MPI_File_write_all operation when the data is initially 

placed in the one-to-one OST pattern. As can be seen, 

Y-Lib improves I/O performance by up to a factor of ten. 

This is particularly impressive given that each process 

performed 1024 independent write operations.  

 

 

Figure 6: Data aggregation patterns without redistribution 

 

Figure 7 shows the throughput obtained assuming the 

optimal data distribution for each approach. That is, the 

data was in the conforming distribution for MPI-IO, and 

in the one-to-one OST distribution for Y-Lib. Thus 

neither approach required the redistribution of data. As 

can be seen, the one-to-one pattern, which required 1024 

independent write operations, significantly outperformed 

the MPI_File_write_at_all operation, where each 

process wrote a contiguous one Gigabyte buffer to disk. 

In this case, Y-Lib improved performance by up to a 

factor of three.  

 

Figure 7:Data aggregation patterns with redistribution 

 

Figure 8 depicts the performance of three different MPI-

IO collective operations. It includes the two previously 

described approaches, and compares them with the 

performance of MPI-IO when it was forced to use 

independent writes. As can be seen, we were able to 

increase the performance of MPI-IO itself by over a 

factor of two, by forcing it to use the one-to-one OST 

pattern. 
 
 

 

Figure 8: Comparison of MPI write strategies 

 

4.3 Discussion 
 

These results strongly support the hypothesis that MPI-

IO does, in fact, perform very poorly in a Lustre file 

system when the all-to-all communication pattern 

creates significant contention for system resources. They 

also show that it is possible to utilize all of the system 



resources quite profitably when utilizing the data 

redistribution pattern employed by Y-lib. These results 

also lend strong support to other studies on Lustre 

showing that maximum performance is obtained when 

individual processes write to independent files 

concurrently [4, 21]. It also helps explain the commonly 

held belief of (at least some) Lustre developers that 

parallel I/O is not necessary in a Lustre environment, 

and does little to improve performance [2].  

 

4.4 Experimental Studies on BigRed 
 

In our initial exploration of Y-lib on BigRed, we did not 

obtain the improvement in I/O performance that we 

observed on Ranger. Further investigation revealed that 

we were under-utilizing the powerful parallel I//O 

subsystem by having each process communicate with 

only one OST. We then experimented with other OST 

patterns, and found that the best performance was 

obtained when each process communicated with exactly 

two OSTs (what we term a two-OST pattern). Thus all of 

the experiments discussed in this section utilized this 

data redistribution pattern. It should also be noted that 

we had not yet completed the implementation of the 

two-OST redistribution pattern at the time of this 

publication, and thus the experiments discussed here 

assumed that the data was already in the correct 

distribution for each approach.  

 

4.4.1 Data Aggregation Patterns without 

Redistribution 

 

In these experiments, we compared the I/O performance 

obtained when the data was arranged according to the 

conforming distribution or the two-OST distribution. We 

varied the number of aggregator processes between 32 

and 256, and the stripe width between 32 and 96 (the 

maximum number of OSTs available). We scaled the 

file size between 32 and 256 Gigabytes (i.e., one 

Gigabyte times the number of processes), and, for 32 to 

96 processes, set the stripe width equal to the number of 

processes. In the case of 192 processes, we utilized 96 

OSTs. In the 256-process case however, we utilized only 

64 OSTs. This was because the number of processes 

must be a multiple of the number of OSTs to ensure that 

each process always communicates with the same two 

OSTs. In all cases, the stripe size was one Megabyte, 

and the writes were aligned on stripe and lock 

boundaries.  
 
 

As noted above, these experiments assumed the data was 

in the correct distribution for each approach, and thus 

neither performed the first phase of the two-phase I/O 

algorithm. When the data was distributed according to 

the conforming distribution, the aggregators performed a 

single large, contiguous I/O operation. Because of the 

two-to-one OST pattern employed by Y-lib, each 

process made 512 separate I/O requests.  

 

4.4.2 Experimental Results 

 

The results of these experiments are shown in Figure 9. 

As can be seen, the Y-lib distribution pattern starts to 

significantly outperform the conforming distribution 

once the number of processes exceeds 32.  The largest 

improvement comes with 96 processes (and OSTs), 

where a 36% improvement in performance is observed. 

The relative improvement in performance was 

approximately 32% with 192 processes (96 OSTs), and 

was on the order of 5% in the 256-process case (64 

OSTs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. This figure compares I/O performance as a 

function of the redistribution pattern.  

 

4.5 Discussion  

 

These results are very different from those obtained on 

Ranger, and it is interesting to consider the causes for 

such differences. There are really two separate questions: 

Why did the performance of ROMIO increase with 

increasing numbers of processes, and why did the rate of 

performance increases begin to slow for Y-lib in this 

scenario? We address each question in turn.  
We believe the increasing performance observed on 

BigRed was due to the very powerful parallel I/O subsystem 

available from the Data Capacitor, combined with an 



aggregate bandwidth of 240 Gigabits per second 

between the two systems provided by the 24 10-Gigabit 

Myricom connections. Clearly, this infrastructure was 

powerful enough to handle the all-to-all communication 

pattern required by the conforming distribution. 

However, the number of processes we were able to test 

was relatively small (at least compared to Ranger), and it 

would be very interesting to execute the same tests with 

512 processes.  

The reduction in the rate of increasing performance 

observed in Y-lib was, we believe, related to the ratio of 

OSTs to aggregator processes. That is, the overhead of 

performing a large number of small I/O operations 

becomes more pronounced as contention for OSTs and 

network services begins to increase. In the case of 256 

aggregators and 64 OSTs, each OST is communicating 

with eight processes (even though each process is only 

communicating with two OSTs). Thus, while the level 

of contention in this case is not as significant as that 

resulting from the conforming distribution, it is 

apparently enough to begin to impact the performance of 

Y-lib.  

 

5. Related Work 
 

The most closely related work is from Yu et al. [21], 

who implemented the MPI-IO collective write 

operations using the Lustre file-join mechanism. In this 

approach, the I/O processes write separate, independent 

files in parallel, and then merge these files using the 

Lustre file-join mechanism. They showed that this 

approach significantly improved the performance of the 

collective write operation, but that the reading of a 

previously joined file resulted in low I/O performance. 

As noted by the authors, correcting this poor 

performance will require an optimization of the way a 

joined file’s extent attributes are managed.  The authors 

also provide an excellent performance study of MPI-IO 

on Lustre.  

The approach we are pursuing does not require 

multiple independent writes to separate files, but does 

limit the number of Object Storage Targets (OST) with 

which a given process communicates. This maintains 

many of the advantages of writing to multiple 

independent files separately, but does not require the 

joining of such files. The performance analysis 

presented in this paper complements and extends the 

analysis performed by Yu et al.  

Larkin and Fahey [12] provide an excellent analysis 

of Lustre’s performance on the Cray XT3/XT4, and, 

based on such analysis, provide some guidelines to 

maximize I/O performance on this platform. They 

observed, for example, that to achieve peak performance 

it is necessary to use large buffer sizes, to have at least 

as many IO processes as OSTs, and, that at very large 

scale (i.e., thousands of clients), only a subset of the 

processes should perform I/O. While our research 

reaches some of the same conclusions on different 

architectural platforms, there are two primary 

distinctions. First, our research is focused on 

understanding of the poor performance of MPI-IO (or, 

more particularly, ROMIO) in a Lustre environment, 

and on implementing a new ADIO driver for object-

based file systems such as Lustre. Second, our research 

is investigating both contiguous and non-contiguous 

access patterns while this related work focuses on 

contiguous access patterns only.  

In [14], it was shown that aligning the data to be 

written with the basic striping pattern improves 

performance. They also showed that it was important to 

align on lock boundaries. This is consistent with our 

analysis, although we expand the scope of the analysis 

significantly to study the algorithms used by MPI-IO 

(ROMIO) and determine (at least some of) the reasons 

for sub-optimal performance.  
 

6. Conclusions and Future Research  
 

This research was motivated by the fact that MPI-IO has 

been shown to perform poorly in a Lustre environment, 

the reasons for which have been heretofore largely 

unknown. We hypothesized that the problem was related 

to the way the data was redistributed in the first phase of 

a two-phase I/O operation, resulting in an all-to-all 

communication pattern that can cause (perhaps 

significant) contention for system resources. We then 

implemented a new (and non-intuitive) data 

redistribution pattern that significantly reduced such 

contention. This new approach was embodied in a user-

level library termed Y-Lib, which was shown to 

outperform the current implementation of ROMIO by up 

to a factor of ten.  

However, the performance decrease observed on 

Ranger when going from 512 to 1024 processes, coupled 

with the relatively small increase in performance when 

going from 192 to 256 processes on BigRed, indicate 

that the ratio of processes to OSTs is an important factor 

in the performance of Y-lib. Thus one area of current 

research is the development of an analytical model that 

can predict when a one- or two-OST pattern will likely 

lead to improved I/O performance as a function of 

system resources. Similarly, such a model could help 

determine when (and if) the parallel I/O implementation 

should change the data redistribution pattern 



dynamically. The other primary focus of current 

research is the integration of Y-lib into ROMIO.  
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