
Increasing the Scalability of PISM for High Resolution Ice Sheet Models

Phillip Dickens
School of Computing and Information Sciences

University of Maine
Orono, Maine

dickens@umcs.maine.edu

Timothy Morey
Department of Computer Science

University of Maine
Orono, Maine USA

timothy.morey@maine.edu

Abstract—The issue of global climate change is of great interest
to scientist and a critical concern of society at large. One
important piece of the climate puzzle is how the dynamics of
large-scale ice sheets, such as those in Greenland and
Antarctic, will react in response to such climate change.
Domain scientists have developed several simulation models to
predict and understand the behavior of large-scale ice sheets,
but the depth of knowledge gained from such models is largely
dependent upon the resolution at which they can be efficiently
executed. The problem, however, is that relatively small
increases in the resolution of the model result in very large
increases in the size of the input and output data sets, and an
explosion in the number of grid points that must be considered
by the simulation. Thus increasing the resolution of ice-sheet
models, in general, requires the use of supercomputing
technologies and the application of tools and techniques
developed within the high-performance computing research
community. In this paper, we discuss our work in evaluating
and increasing the performance of the Parallel Ice Sheet Model
(PISM) [6, 25, 38], using a high-resolution model of the
Greenland ice sheet, on a state-of-the-art supercomputer. In
particular, we found that the computation performed by PISM
was highly scalable, but that he I/O demands of the higher-
resolution model were a significant drag on overall
performance. We then performed a series of experiments to
determine the cause of the relatively poor I/O performance and
how such performance could be improved. By making simple
changes to the PISM source code and one of the I/O libraries
used by PISM we were able to provide an 8-fold increase in I/O
performance.

Keywords: High resolution Ice sheet models, parallel I/O,
scalable scientific simulations.

I. INTRODUCTION
The Parallel Ice Sheet Model (PISM) [6, 25, 38] is a

widely used parallel simulation model that provides
researchers with insight into the past, current, and future
behavior of large-scale ice sheets. As is the case with other
scientific simulations, the depth of knowledge that can be
gained from the simulation is, to a large extent, dependent
upon the resolution at which the model can be efficiently
executed. The problem, however, is that relatively small
increases in the resolution of the model result in very large
increases in the size of the input and output data sets, and an
explosion in the number of grid points that must be
considered by the simulation. Thus to be a tool for continued
scientific discovery, PISM must be scalable. That is, PISM

must be able to execute efficiently in the face of rapidly
increasing problem sizes.

The tremendous challenges brought about by increasing
the resolution of ice sheet models can be seen in Table 1.
This table depicts some of the characteristics of three data
sets at different resolutions. As can be seen, there is a
dramatic change in the problem requirements when moving
from the 5-KM to the 1-KM resolution of the Greenland ice
sheet. In particular, the number of grid points increases by a
factor of 50 (from approximately 34 million to over 1.6
billion), and the size of the output file increases by a factor
of 25 (from 1.1 GB to 28 GB).

PISM is deigned to scale with increasing problem size by
harnessing the computational power of supercomputing
systems and by leveraging the scalable software libraries that
have been developed by the high-performance computing
research community. The scalability of the computation is
largely derived from its use of the Portable Extensible
Toolkit for Scientific Computation (PETSc), which is a
widely used library of data structures and routines for the
numerical solution of partial differential equations [2, 3,
4]. PETSc, in turn, derives its scalability by spreading its
computation across multiple processors/cores and using MPI
[20] for inter-process communication.

Our concern in this paper is with the performance of the
computational and I/O components of the PISM model.
That is, we are approaching the problem from the point of
view of high-performance computing, and the ways in
which such performance can be optimized. We chose PISM
as the focus of our study primarily because it is an important
parallel ice sheet model that is utilized in a large number of
scientific studies [6, 31, 37, 38].

Until recently, PISM was unable to execute the 1-KM
model of the Greenland ice sheet because the I/O software
[24, 35] was unable to scale to the increased problem size.
The current release of PISM (PISM 0.5) addresses this issue
by utilizing the NetCDF4 I/O package [35], which is able to
handle the demands of the 1-KM resolution model.

	

Table	
 1:	
 This	
 table	
 shows	
 statistics	
 about	
 each	
 model	
 we	
 are	

using,	
 including	
 the	
 number	
 of	
 data	
 points	
 in	
 each	
 spatial	

dimension	
 (x,	
 y,	
 and	
 z),	
 the	
 total	
 number	
 of	
 data	
 points	
 in	
 the	

computational	
 grid,	
 and	
 an	
 approximation	
 of	
 the	
 size	
 of	
 the	

output	
 files	
 produced	
 by	
 the	
 models.	

	

The NetCDF4 library is the latest iteration of Unidata’s

NetCDF library, and it includes many new features such as
large file support and parallel file access. Both of these
features are implemented through the use of the HDF5
library [11], which is a powerful suite of tools designed to
efficiently manage very large and complex data sets.
NetCDF4 [35] provides an enhanced interface on top of the
HDF5 storage layer. The goal of this approach is to leverage
the widespread use and simplicity of NetCDF with the large
file support and parallel I/O performance provided by
HDF5. It should be noted that HDF5 utilizes MPI-IO [22] as
the basis of its parallel I/O.

At the same time that support for NetCDF4 was added,
the PISM developers also added support for the Parallel-
NetCDF library (PNetCDF) [18, 24]. This provides users
with an alternate way to perform parallel file access. While
Parallel-NetCDF does provide support for large datasets via
version 5 of the Common Data Format (CDF5) file format,
this functionality was not exposed in PISM. Thus, the
NetCDF4 library must currently be used when performing
large simulations. The reason for the lack of CDF5 support
in PISM is due to the lack of tools that support CDF5, which,
in turn, is due to Unidata’s choice to not yet support CDF5.
One reason for this is that Unidata does not find the user
request bank in large enough quantity to justify the expense.

Parallel I/O improves I/O performance in much the same
way that PETSc improves computational performance. That
is, the file data is spread across multiple processes, and, in
the best case, each process can write its data to independent
regions of a shared file concurrently. This requires an
underlying parallel file system that can handle multiple
concurrent accesses to the same file. In this paper, we use
Lustre [19] as the parallel file system.

The problem, however, is that even with a parallel I/O
environment and a powerful underlying parallel file system,
the I/O performance of PISM still represents a significant
drag on the execution efficiency of the model. This is a
problem that is common to scientific simulations, and has
been an active area of research in HPC over the past several
years [7, 8, 14, 17, 18, 33, 34]. This is a major issue with
PISM, and this work seeks to understand and improve the
I/O scalability characteristics.

The primary concern of this paper is to study, understand,
and improve the performance of a large-scale ice sheet
model on a powerful supercomputer. We present our work as
a series of steps, each of which improves the overall
performance of the simulation. As will be discussed, the
initial performance of PISM on Ranger was quite poor, and,
in fact, overall performance decreased as the number of
processes across which it was executed increased. We then
iteratively investigated and improved performance, such that
we end up with an 8-fold increase in performance.

We believe this paper provides two key contributions to
the scientific modeling community:

• It provides an extensive analysis of the performance
and scalability of an out-of-pocket scientific
application in a critical domain. To the best of our

knowledge, this is the first such analysis for a
parallel ice sheet model.

• It explains the very poor performance of PNetCDF
in the PISM model, makes minor changes to the
source code to fix the problem, and then provides
significantly better performance than the other
approaches.

The rest of the paper is organized as follows. Section 2
provides background information on ice sheet models in
general and PISM in particular. Section 3 discusses the
experimental design, as well as the architecture and I/O
subsection of the supercomputer. Section 4 covers the steps
taken to understand and improve the I/O performance.
Section 5 discusses related work, and we provide our
conclusions and future directions in Section 6.

II. BACKGROUND

A. Ice Sheet Modeling
Ice sheet modeling is concerned with the laws that

govern the ebb and flow of large glaciers on our planet, as
well on alien planets. Glaciers have been shown to have a
dramatic influence on the climate of our world, and they
contribute to sea-level rise when they melt [5]. However, the
excessively slow speed at which they move presents
difficulties to researchers. Direct experimentation with ice
sheets is not possible for many hypotheses, as glaciers may
appear stationary from day to day. It is only on the scale of
years that a glacier may show noticeable change. For this
reason, a computational model, that can simulate thousands
of years of ice sheet behavior in minutes or hours, is a
valuable tool to researchers.

The extents of a glacier can be measured with remote
sensing techniques, so that we may approximate its geometry
in a discrete structure. Through geological records and core
samples taken from the ice itself, we are able to estimate how
the physical extent of the ice has changed over time, thus
providing a basis for computational models. These core
samples can also provide hints about the climate conditions
that accompanied changes in the ice sheet extents, thus
providing one basis for explaining the complex relationship
between climate and glaciers. [5]

B. PISM
There are many modeling techniques for ice sheets that

have been developed over the years, and many variations of
each such approach. These range from the relatively simple
shallow-ice approximation [6, 38] to the computationally
expensive Full-Stokes model [6, 9, 38]. PISM makes use of
several established techniques, including the shallow-ice and
shallow-shelf approximations [6], and it provides ways to
combine and customize them depending on the problem
under consideration [26]. PISM is one of several open source
ice sheet models available today [10, 16, 30] but it is one of a
very few (but growing number) of models that have a
parallel architecture designed to scale to large problem sizes
[9, 28].

Within PISM, the model takes place in a rectangular
computational box that consists of a collection data points in

three dimensions. This box represents the space that encloses
a glacier, and in the case that the model is based on a real-
world glacier, each of these data points may be mapped to a
unique geographical location in or near that glacier. Since
most glaciers exist very near the poles of the planet, it is
typical to express the coordinates of these points in a
projected coordinate reference system based on the polar
stereographic projection. While the points may not describe a
regular rectangular space in the real world, they do define a
regular rectangular space in their native coordinate reference
system.

In the x and y dimensions, the grid points are equally
spaced, and have a relatively coarse resolution. The z
dimension is given a relatively finer resolution, and the
spacing of grid points along this dimension may vary within
a given model. Each x y pair defines a single rectangular
column of ice that is parallel with the force of gravity. The
structure of the grid is shown in Figure 1. When we say that
we are modeling the Greenland ice sheet at one-kilometer
resolution, we mean that each column of ice is a one-
kilometer by one-kilometer square column. In contrast, the z
dimension might consist of equally spaced grid points 10
meters apart.

PISM takes the entire computational box and divides it
into n rectangular sub-grids, where n is the number of
processes being used for the simulation. It attempts to make
the sub-grids as square as possible in the x and y dimensions
because the calculation of a new value for a given grid point
often only depends on the current values of variables at
adjacent grid points. Therefore, the degree to which the
computation of one sub-grid depends on results from another
sub-grid is proportional to the perimeter of local grid, and the
square has the minimum perimeter for any rectangle of area
n. However, for many computational box sizes and values of
n, there is no way to evenly distribute the grid points to n
non-intersecting squares. In such cases, PISM arranges the
sub-grids into r rows and c columns with n = rc, with no row
being more than one grid point wider than any other row,
and no column being more than one grid point taller than any
other column.

The form of parallelism used in the Parallel Ice Sheet
Model is process parallelism, where independent processes,
possibly on separate machines, communicate using the
Message Passing Interface (MPI) [20]. PISM uses the single-
program, multiple-data (SPMD) paradigm, where each
process owns an independent region of the model’s
computational box. The computation within these
independent regions, and the MPI communication between
the processes that own such regions, is largely performed by
PETSc. An example of how processes can be assigned to
regions of the computational model is also provided in
Figure 1.

	

	

Figure	
 1:	
 In	
 (a),	
 we	
 see	
 how	
 regions	
 of	
 the	
 computational	

box	
 are	
 mapped	
 to	
 MPI	
 processes,	
 identified	
 by	
 rank.	
 Each	

process	
 owns	
 a	
 rectangular	
 sub-­‐grid	
 of	
 the	
 computational	

box	
 that	
 is	
 structured	
 like	
 Figure	
 (b),	
 with	
 the	
 top	
 face	
 of	

the	
 sub-­‐grid	
 in	
 (b)	
 corresponding	
 to	
 one	
 of	
 the	
 rectangles	

in	
 (a).	
 Each	
 space	
 within	
 the	
 grid	
 in	
 (b)	
 has	
 many	

associated	
 data	
 values,	
 such	
 as	
 temperature,	
 which	

describe	
 the	
 current	
 state	
 of	
 a	
 block	
 of	
 ice,	
 ocean,	

atmosphere,	
 or	
 ground	
 that	
 occupies	
 that	
 space.	

It is important to note that the computation performed by

PISM is highly scalable because each process only modifies
data local to its region of the space (although it may have to
read data from adjacent processes). This is a key point
because all processes can largely perform their computation
concurrently and independently. Thus the computation of
PISM should scale close to linearly with the number of
processes/cores, as long as there is enough work per process
to mitigate the cost of the inter-process communication. This
is confirmed through experimentation discussed below.

C. PISM I/O
Stated most simply, PISM reads input from, and writes

output to, files defined by the Network Common Data
Format (NetCDF) [35]. NetCDF is developed and
maintained by the Unidata Program, which focuses on
providing support for high-performance computing within
the atmospheric and related geo-sciences [36]. At a lower
level, PISM also takes advantage of HDF5 [11], developed
by the HDF Group [13], which provides a data model, file
format, and a set of tools to support large and complex
scientific data sets. HDF5 also provides scalable parallel I/O,
and a number of approaches (e.g., data chunking and chunk
caching [12]), through which the efficiency of parallel I/O
operations can be further enhanced. Both NetCDF and HDF5
files are known as self-describing because they maintain
enough meta-data to describe the structure and meaning of
the underlying data.

Until recently, PISM was unable to simulate the full
Greenland ice sheet at 1-KM resolution because of the lack
of support for large files. It now uses NetCDF4 [35], which
was developed by Unidata to provide an enhanced NetCDF
API on top of the HDF5 file format. In the remainder of the
paper we term this approach NetCDF4/HDF5.

PISM also provides support for Parallel-NetCDF [18, 24]
(termed PNetCDF), which was developed and is maintained
at Argonne National Laboratory, and which provided the
first support for parallel I/O for NetCDF files. However,
PNetCDF can only scale to large files when utilizing the
CDF5 file format [24], which is not currently supported by
Unidata [35]. For reasons that will be explained later, when
using PNetCDF to write data, PISM actually uses both
NetCDF4 and PNetCDF to create and fill the file. Thus,
PISM can only use earlier versions of the CDF format with
PNetCDF, which allows us to use parallel I/O support, but
which cannot scale to the large data sets required for higher-
resolution models. We will refer to PISM’s support of
PNetCDF as PNetCDF/DS.

III. EXPERIMENTAL DESIGN

A. Data Sets
The first model that we will be using is a model of the

Greenland ice sheet, which is based on input data from the
SeaRISE project. [29] This data can be used to model the ice
sheet at a variety of horizontal resolutions, but we will be
focusing on the one-kilometer resolution, which we refer to
as the G1km model.

The G1km model consists of 1501 grid points in the x
dimension, 2801 in the y dimension, and 401 in the z
dimension, for a total of more than 1.6 billion grid points. A
single three-dimensional variable, which consists of a
double-precision floating-point value at each grid point, will
require about 13 GB of storage space at G1km. A typical
output file, which contains multiple one, two, and three-
dimensional variables and all of the data necessary to restart
the model, will be about 28 GB for G1km.

Due to the size of the G1km model, only the CDF5 and
HDF5 file formats may be used at this resolution.
Additionally, the size of G1km also presents problems at
run-time, as the model requires more than a terabyte of
memory when the simulation is running. Few workstations
provide this amount of memory, so it is necessary to use a
supercomputer for G1km.

As mentioned previously, the source data for the models
was provided by the SeaRISE project [29], but this data was
modified significantly to prepare it for our test runs. In
particular, the data was preprocessed to put it into a format
that PISM can use, and it was processed with the PISM spin-
up procedure. This procedure transforms the preprocessed
data into a PISM model state that represents the current state
of the Greenland ice-sheet, and it is a very time consuming
procedure.

Due to constraints on computational resources,
performing a full spin-up for the G1km model was not
practical, so we decided to simply re-sample the G5km
model state to the G1km resolution. The resulting model
may not have the predictive abilities that a properly spun-up
model would have, but it has the correct number of data
points and the data points do describe a glacier.

The results use the spun-up data as input and perform a
predictive simulation. The parameters for this simulation are
based on the parameters of the first experimental control run

given in the PISM example scripts, which is described in
[26]. The only modification made was to shorten the
simulation to run for zero years, rather than the suggested
500 years. This was done so that we could more easily focus
on the initialization and output procedures without spending
all of our computation resources performing unnecessary
calculations. However, even when running for zero years,
PISM performs a single time step, which allows us to
measure the compute performance.

We are also using a model of the Antarctic ice-sheet at 10
kilometer resolution, which we will refer to as A10km. As
with the G1km and G5km models, the A10km model was
based upon SeaRISE data [29], and was produced through
the example pre-processing and spin-up scripts distributed
with PISM. The parameters of our test runs were again based
upon the first experimental control run provided in PISM's
example scripts. [26] The size of the A10km model falls
between G1km and G5km models, and is summarized in
Table I above.

B. Supercomputer
All of our experimental work was performed on Ranger:

a supercomputer housed at the Texas Advanced Computing
Center at the University of Texas at Austin. Ranger consists
of 3,936 compute nodes, each of which consists of 4 quad
core AMD Operton processors and 32 GB of memory. Thus
each compute node provides 16 processors, for a total of
62,976 compute cores. The system provides a total of 123
TB of memory, and 1.7 PB of raw global disk space. All
Ranger nodes are interconnected using InfiniBand
technology [15] in a full-CLOS topology providing 1GB/sec
of point-to-point bandwidth. Ranger uses version 2.6.18.8 of
the Linux kernel, and the software stack is built with the Intel
compiler. Its MPI-IO implementation is MVAPICH2-1.8
[23].

C. Lustre Parallel I/O Subsystem
Lustre [19] consists of three primary components: file

system clients (that request I/O services), object storage
servers (OSSs) (that provide I/O services), and meta-data
servers that manage the name space of the file system. Each
OSS can support multiple Object Storage Targets (OSTs)
that handle the duties of object storage and management. The
scalability of Lustre is derived from two primary sources.
First, file metadata operations are de-coupled from file I/O
operations. The metadata is stored separately from the file
data, and once a client has obtained the metadata it
communicates directly with the OSSs in subsequent I/O
operations. This provides significant parallelism because
multiple clients can interact with multiple storage servers in
parallel. The second driver for scalable performance is the
striping of files across multiple OSTs, which provides
parallel access to shared files by multiple processes.

Lustre provides APIs allowing the application to set the
stripe size, the number of OSTs across which the file will be
striped (the stripe width), the index of the OST in which the
first stripe will be stored, and to retrieve the striping
information for a given file. The stripe size is set when the
file is opened and cannot be modified once set. Lustre

assigns stripes to OSTs in a round-robin fashion, beginning
with the designated OST index.

The Lustre file system on Ranger consists of six Sun
x4600 metadata servers, 72 Sun x4500 disk servers each
containing 48 SATA drives for an aggregate storage capacity
of 1.73 petabytes. The file system is partitioned into three
Lustre file systems. On the Scratch file system used in these
experiments, there were 50 OSSs, each of which hosted six
OSTs, for a total of 300 OSTs. The bottleneck in the system
was the 1-Gigabyte per second throughput from the OSSs to
the Inifiband network.

IV. EXPERIMENTAL PROGRESSION

A. Scalability of Smaller Resolution Models
One advantage of using real-world applications is the

ability to look at how the computation scales with increasing
problem size, and whether there exists a trade-off between
scalable computation and scalable I/O performance. The first
set of experiments looked at the computational scalability.

In these experiments, we used the A10K model and
measured the time taken to complete the first time-step of the
model state. We varied the number of nodes between 4 and
64, and measure the compute time as a function of the
number of processes. For each set of nodes, we varied the
“wayness” utilized (i.e., core per node) at 1, 4, 8, and 16.
Thus at the largest level, we utilized a total of 1024
processing cores.

The results are shown in Figure 2. As can be seen, the
computational component of PISM scales exceptionally well
as the number of compute core is increased. The reason for
such excellent scalability was alluded to above: there was
one process per core, each process was using PETSc for the
computation, and every process wrote strictly into its region
of the computational grid. PETSc performed the computation
and managed all of the inter-process communication through
MPI-IO.

Figure	
 2:	
 Time	
 required	
 to	
 complete	
 one	
 time	
 step	
 of	
 the	

model	
 as	
 a	
 function	
 of	
 the	
 number	
 of	
 nodes	
 and	
 number	
 of	

processes	
 per	
 node	
 (wayness)	
 using	
 the	
 A10km	
 data	
 set.	

B. Scalability of Computation and Write Time
The next set of experiments looked at the overall run

time (i.e., time taken to initialize the model, compute the first
time-step, and write the model state to disk) using the
A10km data. The results are show in Figure 3. Two points
are immediately clear. First, adding the I/O workload had a
significant impact on the runtime, particularly as the number
of processes/core per node increased. Second, PNetCDF/DS
out-performed the NetCDF4 approach by a factor of two in
the case of 1024 processes, 16 processes per node.

This is an interesting result, because it indicates that there
is some sort of trade-off between maximizing computational
scalability (by utilizing the maximum number of core) and
I/O scalability (by utilizing fewer core). Further research is
needed to understand this phenomenon, and why it appears
to impact one approach more significantly than the other
even though both are using MPI-IO.

C. Scalability of Write Time
We next focused only on the time required to write the

model state at the end of the first time-step using the A10km
model. The results are shown in Figure 4. As can be seen,
there is a dramatic difference in performance, with
PNetCDF/DS significantly outperforming NetCDF4. We
also note that increasing the number of processes
significantly decreases the I/O performance in both cases,
but to much larger extent in NetCDF4.

Figure	
 3:	
 The	
 graph	
 on	
 the	
 left	
 shows	
 the	
 overall	
 runtime	

for	
 a	
 complete	
 time	
 step	
 as	
 a	
 function	
 of	
 the	
 number	
 of	

nodes	
 and	
 processes	
 per	
 node	
 using	
 the	
 PNetCDF/DS	

approach.	
 The	
 figure	
 on	
 the	
 right	
 shows	
 the	
 same	

information	
 using	
 NetCDF4.	
 These	
 results	
 are	
 from	
 the	

A10km	
 model.	

Figure	
 4:	
 The	
 graph	
 on	
 the	
 left	
 shows	
 the	
 time	
 required	
 to	

write	
 out	
 the	
 model	
 state	
 as	
 a	
 function	
 of	
 the	
 number	
 of	

nodes	
 and	
 processes	
 per	
 node	
 using	
 the	
 PNetCDF/DS	

approach.	
 The	
 figure	
 on	
 the	
 right	
 shows	
 the	
 same	

information	
 using	
 NetCDF4.	
 These	
 results	
 are	
 from	
 the	

A10km	
 model.

D. Scaling to 1km Resolution
Motivated by the relatively better performance of the

PNetCDF library, we decided to implement large file support
for PNetCDF. PISM currently only provides support for such
high-resolution data via the NetCDF4 library. However,
Argonne's Parallel-NetCDF library [18, 24] also provides
support for such high-resolution data via the CDF-5 format,
and it was not difficult to ensure that the PNetCDF library is
used for writing file data and metadata using the CDF5
format. We term this approach PNetCDF/CDF5.

Moving to the CDF5 version revealed an interesting
feature in PISM: the Parallel-NetCDF library was never
being used to write the metadata. This was an interesting
phenomenon, and we discovered comments in the PISM
source code explained that PNetCDF was not being used to
write metadata for performance reasons. The PISM
developers had performed some experimentation and found
that they were able to achieve better performance with a
hybrid approach, rather than using PNetCDF directly. The
hybrid approach involved using NetCDF4 in the legacy
serial mode to create the file structure and then used
PNetCDF to write the data.

After modifying PISM to use PNetCDF for both data and
metadata, we attempted to run a G1km simulation, which
requires the large file support. However, we found that PISM
would become unresponsive while writing its output, and the
run would not complete in a reasonable amount of time. Due
to the cost of computational resources, we did not allow the
simulation to run for an arbitrary amount of time to see if it
would have completed, but rather stopped it after it had run
for twice as long as it would have required for the equivalent
run with NetCDF4 output.

In order to learn more about the new implementation, we
attempted an A10km run, and allowed it to run to
completion. After a lengthy pause during the output phase,
the simulation did complete, and it produced valid output.
The results are shown in figure 5, and, as can be seen, using
PNetCDF/CDF-5 to write meta-data and data resulted in a
10-fold decrease in performance. To understand the reason
for such poor performance, it is necessary to briefly discuss
the structure and operations of CDF5 files.

The NetCDF4 and PNetCDF libraries define two modes
of execution when writing to a file: define-mode and data-
mode. In define-mode, the user specifies the structure of the
dataset by defining the variables metadata. The user must
then switch to data-mode to write the actual variable data.
However, switching from define-mode to data-mode can be
an expensive operation, due to the structure of a CDF file.

The structure of a CDF5 file consists of three
components: the header, which contains all of the metadata;
the non-record variable section, which contains fixed-size
variables, and the record section, which contains all record
variables. Record variables are those that make use of the
unlimited dimension and are therefore allowed to grow along
that dimension. In contrast, non-record variables are those
that have a fixed size, which must be specified when the
variable is defined. This ordering of these three sections must

be maintained. Thus, if the user writes data for a record
variable and then switches to define mode to define a new
non-record variable, then the file must be restructured. In
particular, the non-record section must be expanded to
accommodate the variable, which requires that the record
data be moved. Thus one must take care to define all
variables before writing any data.

Violating this pattern was the cause of the extremely poor
performance. In the case of the G1km model, which could
not run to completion, a single record is many gigabytes of
data, all of which must be moved to accommodate the new
file structure. A single record is much smaller in the A10km
model, which did run to completion, but resulted in the 10-
fold decrease in performance shown in Figure 5.

The PISM developers circumvented this problem by
using the hybrid approach discussed above, and the problem
does not occur with HDF-5. We remedied this problem by a
slight modification to the PISM write pattern, which resulted
in a tremendous increase in performance.

After diagnosing and correcting this problem, we
returned to the 1KM Greenland model. Figure 6 shows the
write performance using both NetCDF4 and
PNetCDF/CDF5. As can be seen, using PNetCDF/CDF5
resulted in a speedup in performance by approximately a
factor of 8.

Figure	
 5:	
 This	
 shows	
 the	
 progression	
 in	
 our	
 research	

related	
 to	
 the	
 very	
 poor	
 I/O	
 performance	
 when	
 using	

PNetCDF/CDF-­‐5	
 to	
 write	
 the	
 file	
 data	
 and	
 metadata.	
 The	

“baseline”	
 data	
 is	
 the	
 native	
 performance	
 of	
 PISM	
 0.5	
 which	

uses	
 the	
 hybrid	
 approach.	
 The	
 V1	
 data	
 shows	
 the	
 increased	

cost	
 when	
 of	
 using	
 PNetCDF/CDF-­‐5.	
 “V2”	
 shows	
 the	
 write	

performance	
 when	
 we	
 corrected	
 the	
 write	
 pattern.	
 Note	

that	
 the	
 scale	
 is	
 logarithmic	
 due	
 to	
 the	
 wide	
 variations	
 in	

run	
 time.	

Figure	
 6:	
 This	
 shows	
 the	
 time	
 to	
 output	
 model	
 state	
 using	

NetCDF4	
 (labeled	
 NC/HDF)	
 and	
 PNetCDF/CDF-­‐5	
 (labeled	

PNC),	
 for	
 the	
 G1km	
 resolution	
 model.	

V. RELATED WORK
It is well known that I/O is a frequent bottleneck in the

performance of parallel, scientific applications [7, 8, 14, 17,
18, 33, 34]. Through the years, a multitude of approaches
have been developed to minimize the cost of I/O in parallel
applications. MPI-IO [22] defines a standard interface for
parallel I/O as well as collective file access semantics. The
ROMIO [33] implementation of MPI-IO introduces
optimizations for parallel I/O, in the form of data-sieving and
two-phase I/O. [34]

The NetCDF4 [35], PNetCDF [18, 24], and HDF5 [11]
libraries have been developed to make the semantics of MPI-
IO and the optimizations of ROMIO more accessible to
application developers. They allow the application developer
to represent the application data in a format that is
convenient on the application level, and they provide
functionality to translate between the application's data-
model and a serialized data-model that will fit in a file. The
Adaptable Input/Output System (ADIOS) [1] is another
system that seeks to reduce the cost of I/O in parallel
applications. It introduces a new file format, but also
provides tools to translate this format to and from the
NetCDF and HDF5 formats.

In this work, we have made use of several of the libraries
and techniques described above to analyze and improve the
I/O performance of PISM. In [14], a similar study was
performed, focusing on different parallel models and
exclusively using the HDF5 format. In [18], the performance
of the initial implementation of PNetCDF was compared to
the (then serial) NetCDF library as well as the parallel HDF5
library using benchmark applications. To the best of our
knowledge, no other studies of the I/O performance of ice
sheet models have been performed.

VI. DISCUSSION
It is important to re-iterate that our goal was to utilize

PISM out of the box and did not attempt to optimize any of
the I/O libraries with the one exception discussed above.
Thus our research shows that in this important model, the
NetCDF4 implementation provides significantly poorer

performance than the PNetCDF implementation. There are
several possibilities for optimization of both libraries, and
HDF5 provides many mechanisms for performance
enhancements [12, 14]. It would be interesting to look at the
impact of such options, particularly since PISM is a widely
used model in a critical domain.

Currently, PNetCDF is not available on PISM for large
files. One likely reason is the very poor performance
achieved when using the writing pattern discussed above.
This study suggests that PNetCDF can, in fact, provide
excellent performance.

There are several areas in which this research can be
extended. First, we would like to utilize the optimizations
that are available in the NetCDF4 library and determine their
impact on performance. Similarly, we would like to spend
more time optimizing PNetCDF through the use of Y-Lib
[8], which has been shown to provide orders of magnitude
performance increase over native ROMIO [33], which is the
foundation upon which all of these libraries are based.
Finally, we would like to utilize the ADIOS [1] platform to
compare these and perhaps other optimization techniques.

ACKNOWLEDGMENTS
We acknowledge the Texas Advanced Computing Center

(TACC) at The University of Texas at Austin for providing
HPC resources that have contributed to the research results
reported within this paper. URL: http://www.tacc.utexas.edu

REFERENCES
[1] Adios - Oak Ridge Leadership Computing Facility.

www.olcf.ornl.gov/center-projects/adios/, 2012.
[2] Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William

D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman
McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.3, Argonne National
Laboratory, 2012.

[3] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp,
Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry
F. Smith, and Hong Zhang. PETSc Web page, 2012.
http://www.mcs.anl.gov/petsc.

[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry
F. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.
Langtangen, editors, Modern Software Tools in Scientific Computing,
pages 163-202. Birkhauser Press, 1997.

[5] R. A. Bindschadler and 27 others. Ice-sheet model sensitivities to
environmental forcing and their use in projecting future sea-level (the
SeaRISE project). Journal of Glaciology, Submitted, 2012.

[6] E. Bueler and J. Brown. Shallow shelf approximation as a "sliding
law" in a thermodynamically coupled ice sheet model. J. Geophys.
Res., 114, 2009.

[7] Kenin Coloma, Avery Ching, Alok Choudhary, Wei keng Liao, Rob
Ross, Rajeev Thakur, and Lee Ward. A new flexible MPI collective
I/O implementation. In Proceedings of the IEEE International
Conference on Cluster Computing, September 2006.

[8] Phillip M. Dickens and Jeremy Logan. A high performance
implementation of MPI-IO for a Lustre file system environment.
Concurrency and Computation: Practice and Experience - Grid
Computing, High Performance and Distributed Application, Volume
22, August 2010.

[9] Elmer/ice. http://elmerice.elmerfem.org/, 2012.

[10] Glimmer community ice sheet model. http://glimmer-cism.berlios.de/,
2012.

[11] Hierarchical data format version 5. http://www.hdfgroup.org/HDF5,
2000-2010.

[12] HDF5 user's guide. http://www.hdfgroup.org/HDF5/doc/UG/, 2012.
[13] The hdf group. http://www.hdfgroup.org/, 2012.
[14] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, and

John Shalf. Tuning HDF5 for Lustre File Systems. In Proceedings of
2010 Workshop on Interfaces and Abstractions for Scientific Data
Storage (IASDS10), Heraklion, Crete, Greece, September 2010.
LBNL-4803E.

[15] Infiniband trade association home. http://www.infinibandta.org/,
2012.

[16] ISSM: Ice Sheet System Model. http://issm.jpl.nasa.gov/, 2012.
[17] Wei keng Liao and Alok Choudhary. Dynamically adapting file

domain partitioning methods for collective I/O based on underlying
parallel file system locking protocols. In SC '08 Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[18] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev
Thakur, William Gropp, Rob Latham, Andrew Siegel, Brad
Gallagher, and Michael Zingale. Parallel netcdf: A high-performance
scientific i/o interface. In Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, SC '03, pages 39-, New York, NY,
USA, 2003. ACM.

[19] Lustre. http://wiki.lustre.org/index.php/Main_Page, 2012.
[20] Message Passing Interface (MPI) Forum Home Page.

http://www.mpi-forum.org/, 2012.
[21] MPICH. http://www.mpich.org/, 2012.
[22] MPI-2: Extensions to the message-passing interface. http://mpi-

forum.org/docs/mpi-20-html/mpi2-report.html, 1997.
[23] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE.

http://mvapich.cse.ohio-state.edu/, 2012.
[24] Parallel netCDF: A high performance api for NetCDF file access.

www.mcs.anl.gov/parallel-netcdf, 2012.

[25] PISM, a Parallel Ice Sheet Model. http://www.pism-docs.org, 2012.
[26] PISM, a Parallel Ice Sheet Model: User's manual. http://www.pism-

docs.org/wiki/lib/exe/fetch.php?media=manual.pdf, 2012.
[27] Repository for Parallel Ice Sheet Model (PISM).

https://github.com/pism/pism, 2012.
[28] SEACISM: A Scalable, Efficeint and Accurate Community Ice Sheet

Model. http://www.csm.ornl.gov/SEACISM/, 2012.
[29] Searise assessment. http://websrv.cs.umt.edu/isis/index.php

/SeaRISE_Assessment/, 2012.
[30] Ice sheet model sicopolis. http://sicopolis.greveweb.net/, 2012.
[31] A. Solgaard and P. Langen. Multistability of the greenland ice sheet

and the effects of an adaptive mass balance formulation. Climate
Dynamics, 2012.

[32] Texas Advanced Computing Center. Ranger user guide.
http://www.tacc.utexas.edu/user-services/user-guides/ranger-user-
guide, 2012.

[33] Rajeev Thakur, William Gropp, and Ewing Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO Implementation.
Mathematics and Computer Science Division, Argonne National
Laboratory, October 1997. ANL/MCS-TM-234.

[34] Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing
noncontiguous accesses in mpi-io. Parallel Computing, 28:83-105,
2002.

[35] Unidata. NetCDF (Network Common Data Form).
http://www.unidata.ucar.edu/software/netcdf/, 2012.

[36] Unidata. http://www.unidata.ucar.edu/, 2012.
[37] W. J. J. van Pelt and J. Oerlemans. Numerical simulations of cyclic

behaviour in the parallel ice sheet model (PISM). Journal of
Glaciology, 58(208):347{360, 2012.

[38] R. Winkelmann, M. A. Martin, M. Haselo_, T. Albrecht, E. Bueler,
C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet
Model (PISM-PIK) Part 1: Model description. The Cryosphere,
5:715-726, 2011.

