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Abstract—The issue of global climate change is of great interest 
to scientist and a critical concern of society at large. One 
important piece of the climate puzzle is how the dynamics of 
large-scale ice sheets, such as those in Greenland and 
Antarctic, will react in response to such climate change. 
Domain scientists have developed several simulation models to 
predict and understand the behavior of large-scale ice sheets, 
but the depth of knowledge gained from such models is largely 
dependent upon the resolution at which they can be efficiently 
executed. The problem, however, is that relatively small 
increases in the resolution of the model result in very large 
increases in the size of the input and output data sets, and an 
explosion in the number of grid points that must be considered 
by the simulation. Thus increasing the resolution of ice-sheet 
models, in general, requires the use of supercomputing 
technologies and the application of tools and techniques 
developed within the high-performance computing research 
community. In this paper, we discuss our work in evaluating 
and increasing the performance of the Parallel Ice Sheet Model 
(PISM) [6, 25, 38], using a high-resolution model of the 
Greenland ice sheet, on a state-of-the-art supercomputer. In 
particular, we found that the computation performed by PISM 
was highly scalable, but that he I/O demands of the higher-
resolution model were a significant drag on overall 
performance. We then performed a series of experiments to 
determine the cause of the relatively poor I/O performance and 
how such performance could be improved. By making simple 
changes to the PISM source code and one of the I/O libraries 
used by PISM we were able to provide an 8-fold increase in I/O 
performance.  

Keywords:  High resolution Ice sheet models, parallel I/O, 
scalable scientific simulations. 

I. INTRODUCTION 
The Parallel Ice Sheet Model (PISM) [6, 25, 38] is a 

widely used parallel simulation model that provides 
researchers with insight into the past, current, and future 
behavior of large-scale ice sheets. As is the case with other 
scientific simulations, the depth of knowledge that can be 
gained from the simulation is, to a large extent, dependent 
upon the resolution at which the model can be efficiently 
executed. The problem, however, is that relatively small 
increases in the resolution of the model result in very large 
increases in the size of the input and output data sets, and an 
explosion in the number of grid points that must be 
considered by the simulation. Thus to be a tool for continued 
scientific discovery, PISM must be scalable. That is, PISM 

must be able to execute efficiently in the face of rapidly 
increasing problem sizes.  

The tremendous challenges brought about by increasing 
the resolution of ice sheet models can be seen in Table 1. 
This table depicts some of the characteristics of three data 
sets at different resolutions.  As can be seen, there is a 
dramatic change in the problem requirements when moving 
from the 5-KM to the 1-KM resolution of the Greenland ice 
sheet.  In particular, the number of grid points increases by a 
factor of 50 (from approximately 34 million to over 1.6 
billion), and the size of the output file increases by a factor 
of 25 (from 1.1 GB to 28 GB).  

PISM is deigned to scale with increasing problem size by 
harnessing the computational power of supercomputing 
systems and by leveraging the scalable software libraries that 
have been developed by the high-performance computing 
research community. The scalability of the computation is 
largely derived from its use of the Portable Extensible 
Toolkit for Scientific Computation (PETSc), which is a 
widely used library of data structures and routines for the 
numerical solution of partial differential equations [2, 3, 
4]. PETSc, in turn, derives its scalability by spreading its 
computation across multiple processors/cores and using MPI 
[20] for inter-process communication.   

Our concern in this paper is with the performance of the 
computational and I/O components of the PISM model. 
That is, we are approaching the problem from the point of 
view of high-performance computing, and the ways in 
which such performance can be optimized. We chose PISM 
as the focus of our study primarily because it is an important 
parallel ice sheet model that is utilized in a large number of 
scientific studies [6, 31, 37, 38]. 

Until recently, PISM was unable to execute the 1-KM 
model of the Greenland ice sheet because the I/O software 
[24, 35] was unable to scale to the increased problem size. 
The current release of PISM (PISM 0.5) addresses this issue 
by utilizing the NetCDF4 I/O package [35], which is able to 
handle the demands of the 1-KM resolution model.  
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The NetCDF4 library is the latest iteration of Unidata’s 

NetCDF library, and it includes many new features such as 
large file support and parallel file access.  Both of these 
features are implemented through the use of the HDF5 
library [11], which is a powerful suite of tools designed to 
efficiently manage very large and complex data sets. 
NetCDF4 [35] provides an enhanced interface on top of the 
HDF5 storage layer. The goal of this approach is to leverage 
the widespread use and simplicity of NetCDF with the large 
file support and parallel I/O performance provided by 
HDF5.  It should be noted that HDF5 utilizes MPI-IO [22] as 
the basis of its parallel I/O.  

At the same time that support for NetCDF4 was added, 
the PISM developers also added support for the Parallel-
NetCDF library (PNetCDF) [18, 24].  This provides users 
with an alternate way to perform parallel file access.  While 
Parallel-NetCDF does provide support for large datasets via 
version 5 of the Common Data Format (CDF5) file format, 
this functionality was not exposed in PISM.  Thus, the 
NetCDF4 library must currently be used when performing 
large simulations.  The reason for the lack of CDF5 support 
in PISM is due to the lack of tools that support CDF5, which, 
in turn, is due to Unidata’s choice to not yet support CDF5.  
One reason for this is that Unidata does not find the user 
request bank in large enough quantity to justify the expense. 

Parallel I/O improves I/O performance in much the same 
way that PETSc improves computational performance. That 
is, the file data is spread across multiple processes, and, in 
the best case, each process can write its data to independent 
regions of a shared file concurrently. This requires an 
underlying parallel file system that can handle multiple 
concurrent accesses to the same file. In this paper, we use 
Lustre [19] as the parallel file system.  

The problem, however, is that even with a parallel I/O 
environment and a powerful underlying parallel file system, 
the I/O performance of PISM still represents a significant 
drag on the execution efficiency of the model. This is a 
problem that is common to scientific simulations, and has 
been an active area of research in HPC over the past several 
years [7, 8, 14, 17, 18, 33, 34]. This is a major issue with 
PISM, and this work seeks to understand and improve the 
I/O scalability characteristics. 

The primary concern of this paper is to study, understand, 
and improve the performance of a large-scale ice sheet 
model on a powerful supercomputer. We present our work as 
a series of steps, each of which improves the overall 
performance of the simulation. As will be discussed, the 
initial performance of PISM on Ranger was quite poor, and, 
in fact, overall performance decreased as the number of 
processes across which it was executed increased. We then 
iteratively investigated and improved performance, such that 
we end up with an 8-fold increase in performance. 

We believe this paper provides two key contributions to 
the scientific modeling community: 

• It provides an extensive analysis of the performance 
and scalability of an out-of-pocket scientific 
application in a critical domain. To the best of our 

knowledge, this is the first such analysis for a 
parallel ice sheet model.  

• It explains the very poor performance of PNetCDF 
in the PISM model, makes minor changes to the 
source code to fix the problem, and then provides 
significantly better performance than the other 
approaches. 

The rest of the paper is organized as follows. Section 2 
provides background information on ice sheet models in 
general and PISM in particular.  Section 3 discusses the 
experimental design, as well as the architecture and I/O 
subsection of the supercomputer. Section 4 covers the steps 
taken to understand and improve the I/O performance. 
Section 5 discusses related work, and we provide our 
conclusions and future directions in Section 6. 

II. BACKGROUND 

A. Ice Sheet Modeling 
Ice sheet modeling is concerned with the laws that 

govern the ebb and flow of large glaciers on our planet, as 
well on alien planets. Glaciers have been shown to have a 
dramatic influence on the climate of our world, and they 
contribute to sea-level rise when they melt [5]. However, the 
excessively slow speed at which they move presents 
difficulties to researchers. Direct experimentation with ice 
sheets is not possible for many hypotheses, as glaciers may 
appear stationary from day to day. It is only on the scale of 
years that a glacier may show noticeable change. For this 
reason, a computational model, that can simulate thousands 
of years of ice sheet behavior in minutes or hours, is a 
valuable tool to researchers.  

The extents of a glacier can be measured with remote 
sensing techniques, so that we may approximate its geometry 
in a discrete structure. Through geological records and core 
samples taken from the ice itself, we are able to estimate how 
the physical extent of the ice has changed over time, thus 
providing a basis for computational models. These core 
samples can also provide hints about the climate conditions 
that accompanied changes in the ice sheet extents, thus 
providing one basis for explaining the complex relationship 
between climate and glaciers. [5] 

B. PISM 
There are many modeling techniques for ice sheets that 

have been developed over the years, and many variations of 
each such approach. These range from the relatively simple 
shallow-ice approximation [6, 38] to the computationally 
expensive Full-Stokes model [6, 9, 38]. PISM makes use of 
several established techniques, including the shallow-ice and 
shallow-shelf approximations [6], and it provides ways to 
combine and customize them depending on the problem 
under consideration [26]. PISM is one of several open source 
ice sheet models available today [10, 16, 30] but it is one of a 
very few (but growing number) of models that have a 
parallel architecture designed to scale to large problem sizes 
[9, 28].  

Within PISM, the model takes place in a rectangular 
computational box that consists of a collection data points in 



three dimensions. This box represents the space that encloses 
a glacier, and in the case that the model is based on a real-
world glacier, each of these data points may be mapped to a 
unique geographical location in or near that glacier. Since 
most glaciers exist very near the poles of the planet, it is 
typical to express the coordinates of these points in a 
projected coordinate reference system based on the polar 
stereographic projection. While the points may not describe a 
regular rectangular space in the real world, they do define a 
regular rectangular space in their native coordinate reference 
system.  

In the x and y dimensions, the grid points are equally 
spaced, and have a relatively coarse resolution. The z 
dimension is given a relatively finer resolution, and the 
spacing of grid points along this dimension may vary within 
a given model. Each x y pair defines a single rectangular 
column of ice that is parallel with the force of gravity. The 
structure of the grid is shown in Figure 1. When we say that 
we are modeling the Greenland ice sheet at one-kilometer 
resolution, we mean that each column of ice is a one- 
kilometer by one-kilometer square column. In contrast, the z 
dimension might consist of equally spaced grid points 10 
meters apart. 

PISM takes the entire computational box and divides it 
into n rectangular sub-grids, where n is the number of 
processes being used for the simulation.  It attempts to make 
the sub-grids as square as possible in the x and y dimensions 
because the calculation of a new value for a given grid point 
often only depends on the current values of variables at 
adjacent grid points. Therefore, the degree to which the 
computation of one sub-grid depends on results from another 
sub-grid is proportional to the perimeter of local grid, and the 
square has the minimum perimeter for any rectangle of area 
n. However, for many computational box sizes and values of 
n, there is no way to evenly distribute the grid points to n 
non-intersecting squares. In such cases, PISM arranges the 
sub-grids into r rows and c columns with n = rc, with no row 
being more than one grid point wider than any other row, 
and no column being more than one grid point taller than any 
other column. 

The form of parallelism used in the Parallel Ice Sheet 
Model is process parallelism, where independent processes, 
possibly on separate machines, communicate using the 
Message Passing Interface (MPI) [20]. PISM uses the single-
program, multiple-data (SPMD) paradigm, where each 
process owns an independent region of the model’s 
computational box. The computation within these 
independent regions, and the MPI communication between 
the processes that own such regions, is largely performed by 
PETSc. An example of how processes can be assigned to 
regions of the computational model is also provided in 
Figure 1.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
	
  
	
  
Figure	
  1:	
   In	
  (a),	
  we	
  see	
  how	
  regions	
  of	
  the	
  computational	
  
box	
  are	
  mapped	
  to	
  MPI	
  processes,	
  identified	
  by	
  rank.	
  Each	
  
process	
  owns	
  a	
   rectangular	
   sub-­‐grid	
  of	
   the	
   computational	
  
box	
   that	
   is	
   structured	
   like	
  Figure	
   (b),	
  with	
   the	
   top	
   face	
  of	
  
the	
  sub-­‐grid	
   in	
   (b)	
  corresponding	
   to	
  one	
  of	
   the	
   rectangles	
  
in	
   (a).	
   Each	
   space	
   within	
   the	
   grid	
   in	
   (b)	
   has	
   many	
  
associated	
   data	
   values,	
   such	
   as	
   temperature,	
   which	
  
describe	
   the	
   current	
   state	
   of	
   a	
   block	
   of	
   ice,	
   ocean,	
  
atmosphere,	
  or	
  ground	
  that	
  occupies	
  that	
  space.	
  
 
It is important to note that the computation performed by 

PISM is highly scalable because each process only modifies 
data local to its region of the space (although it may have to 
read data from adjacent processes). This is a key point 
because all processes can largely perform their computation 
concurrently and independently. Thus the computation of 
PISM should scale close to linearly with the number of 
processes/cores, as long as there is enough work per process 
to mitigate the cost of the inter-process communication. This 
is confirmed through experimentation discussed below. 

C. PISM I/O 
Stated most simply, PISM reads input from, and writes 

output to, files defined by the Network Common Data 
Format (NetCDF) [35].  NetCDF is developed and 
maintained by the Unidata Program, which focuses on 
providing support for high-performance computing within 
the atmospheric and related geo-sciences [36].  At a lower 
level, PISM also takes advantage of HDF5 [11], developed 
by the HDF Group [13], which provides a data model, file 
format, and a set of tools to support large and complex 
scientific data sets. HDF5 also provides scalable parallel I/O, 
and a number of approaches  (e.g., data chunking and chunk 
caching [12]), through which the efficiency of parallel I/O 
operations can be further enhanced. Both NetCDF and HDF5 
files are known as self-describing because they maintain 
enough meta-data to describe the structure and meaning of 
the underlying data.  

Until recently, PISM was unable to simulate the full 
Greenland ice sheet at 1-KM resolution because of the lack 
of support for large files. It now uses NetCDF4 [35], which 
was developed by Unidata to provide an enhanced NetCDF 
API on top of the HDF5 file format. In the remainder of the 
paper we term this approach NetCDF4/HDF5. 



PISM also provides support for Parallel-NetCDF [18, 24] 
(termed PNetCDF), which was developed and is maintained 
at Argonne National Laboratory, and which provided the 
first support for parallel I/O for NetCDF files. However, 
PNetCDF can only scale to large files when utilizing the 
CDF5 file format [24], which is not currently supported by 
Unidata [35]. For reasons that will be explained later, when 
using PNetCDF to write data, PISM actually uses both 
NetCDF4 and PNetCDF to create and fill the file.  Thus, 
PISM can only use earlier versions of the CDF format with 
PNetCDF, which allows us to use parallel I/O support, but 
which cannot scale to the large data sets required for higher-
resolution models. We will refer to PISM’s support of 
PNetCDF as PNetCDF/DS. 

III. EXPERIMENTAL DESIGN 

A. Data Sets 
The first model that we will be using is a model of the 

Greenland ice sheet, which is based on input data from the 
SeaRISE project. [29] This data can be used to model the ice 
sheet at a variety of horizontal resolutions, but we will be 
focusing on the one-kilometer resolution, which we refer to 
as the G1km model.  

The G1km model consists of 1501 grid points in the x 
dimension, 2801 in the y dimension, and 401 in the z 
dimension, for a total of more than 1.6 billion grid points. A 
single three-dimensional variable, which consists of a 
double-precision floating-point value at each grid point, will 
require about 13 GB of storage space at G1km. A typical 
output file, which contains multiple one, two, and three-
dimensional variables and all of the data necessary to restart 
the model, will be about 28 GB for G1km. 

Due to the size of the G1km model, only the CDF5 and 
HDF5 file formats may be used at this resolution. 
Additionally, the size of G1km also presents problems at 
run-time, as the model requires more than a terabyte of 
memory when the simulation is running. Few workstations 
provide this amount of memory, so it is necessary to use a 
supercomputer for G1km. 

As mentioned previously, the source data for the models 
was provided by the SeaRISE project [29], but this data was 
modified significantly to prepare it for our test runs. In 
particular, the data was preprocessed to put it into a format 
that PISM can use, and it was processed with the PISM spin-
up procedure. This procedure transforms the preprocessed 
data into a PISM model state that represents the current state 
of the Greenland ice-sheet, and it is a very time consuming 
procedure. 

Due to constraints on computational resources, 
performing a full spin-up for the G1km model was not 
practical, so we decided to simply re-sample the G5km 
model state to the G1km resolution. The resulting model 
may not have the predictive abilities that a properly spun-up 
model would have, but it has the correct number of data 
points and the data points do describe a glacier. 

The results use the spun-up data as input and perform a 
predictive simulation. The parameters for this simulation are 
based on the parameters of the first experimental control run 

given in the PISM example scripts, which is described in 
[26]. The only modification made was to shorten the 
simulation to run for zero years, rather than the suggested 
500 years. This was done so that we could more easily focus 
on the initialization and output procedures without spending 
all of our computation resources performing unnecessary 
calculations.  However, even when running for zero years, 
PISM performs a single time step, which allows us to 
measure the compute performance. 

We are also using a model of the Antarctic ice-sheet at 10 
kilometer resolution, which we will refer to as A10km. As 
with the G1km and G5km models, the A10km model was 
based upon SeaRISE data [29], and was produced through 
the example pre-processing and spin-up scripts distributed 
with PISM. The parameters of our test runs were again based 
upon the first experimental control run provided in PISM's 
example scripts. [26] The size of the A10km model falls 
between G1km and G5km models, and is summarized in 
Table I above. 

B. Supercomputer 
All of our experimental work was performed on Ranger: 

a supercomputer housed at the Texas Advanced Computing 
Center at the University of Texas at Austin. Ranger consists 
of 3,936 compute nodes, each of which consists of 4 quad 
core AMD Operton processors and 32 GB of memory. Thus 
each compute node provides 16 processors, for a total of 
62,976 compute cores. The system provides a total of 123 
TB of memory, and 1.7 PB of raw global disk space. All 
Ranger nodes are interconnected using InfiniBand 
technology [15] in a full-CLOS topology providing 1GB/sec 
of point-to-point bandwidth.  Ranger uses version 2.6.18.8 of 
the Linux kernel, and the software stack is built with the Intel 
compiler. Its MPI-IO implementation is MVAPICH2-1.8 
[23].  

C. Lustre Parallel I/O Subsystem 
Lustre [19] consists of three primary components: file 

system clients (that request I/O services), object storage 
servers (OSSs) (that provide I/O services), and meta-data 
servers that manage the name space of the file system. Each 
OSS can support multiple Object Storage Targets (OSTs) 
that handle the duties of object storage and management. The 
scalability of Lustre is derived from two primary sources. 
First, file metadata operations are de-coupled from file I/O 
operations. The metadata is stored separately from the file 
data, and once a client has obtained the metadata it 
communicates directly with the OSSs in subsequent I/O 
operations. This provides significant parallelism because 
multiple clients can interact with multiple storage servers in 
parallel. The second driver for scalable performance is the 
striping of files across multiple OSTs, which provides 
parallel access to shared files by multiple processes. 

Lustre provides APIs allowing the application to set the 
stripe size, the number of OSTs across which the file will be 
striped (the stripe width), the index of the OST in which the 
first stripe will be stored, and to retrieve the striping 
information for a given file. The stripe size is set when the 
file is opened and cannot be modified once set. Lustre 



assigns stripes to OSTs in a round-robin fashion, beginning 
with the designated OST index. 

The Lustre file system on Ranger consists of six Sun 
x4600 metadata servers, 72 Sun x4500 disk servers each 
containing 48 SATA drives for an aggregate storage capacity 
of 1.73 petabytes. The file system is partitioned into three 
Lustre file systems.  On the Scratch file system used in these 
experiments, there were 50 OSSs, each of which hosted six 
OSTs, for a total of 300 OSTs. The bottleneck in the system 
was the 1-Gigabyte per second throughput from the OSSs to 
the Inifiband network.  

IV. EXPERIMENTAL PROGRESSION 

A. Scalability of Smaller Resolution Models 
One advantage of using real-world applications is the 

ability to look at how the computation scales with increasing 
problem size, and whether there exists a trade-off between 
scalable computation and scalable I/O performance. The first 
set of experiments looked at the computational scalability.  

In these experiments, we used the A10K model and 
measured the time taken to complete the first time-step of the 
model state. We varied the number of nodes between 4 and 
64, and measure the compute time as a function of the 
number of processes. For each set of nodes, we varied the 
“wayness” utilized (i.e., core per node) at 1, 4, 8, and 16. 
Thus at the largest level, we utilized a total of 1024 
processing cores.  

The results are shown in Figure 2. As can be seen, the 
computational component of PISM scales exceptionally well 
as the number of compute core is increased. The reason for 
such excellent scalability was alluded to above: there was 
one process per core, each process was using PETSc for the 
computation, and every process wrote strictly into its region 
of the computational grid. PETSc performed the computation 
and managed all of the inter-process communication through 
MPI-IO.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	
   2:	
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  node	
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  data	
  set.	
  

 
 
 

B. Scalability of Computation and Write Time 
The next set of experiments looked at the overall run 

time (i.e., time taken to initialize the model, compute the first 
time-step, and write the model state to disk) using the 
A10km data. The results are show in Figure 3. Two points 
are immediately clear. First, adding the I/O workload had a 
significant impact on the runtime, particularly as the number 
of processes/core per node increased.  Second, PNetCDF/DS 
out-performed the NetCDF4 approach by a factor of two in 
the case of 1024 processes, 16 processes per node.  

This is an interesting result, because it indicates that there 
is some sort of trade-off between maximizing computational 
scalability (by utilizing the maximum number of core) and 
I/O scalability (by utilizing fewer core). Further research is 
needed to understand this phenomenon, and why it appears 
to impact one approach more significantly than the other 
even though both are using MPI-IO.   

C. Scalability of Write Time 
We next focused only on the time required to write the 

model state at the end of the first time-step using the A10km 
model. The results are shown in Figure 4. As can be seen, 
there is a dramatic difference in performance, with 
PNetCDF/DS significantly outperforming NetCDF4. We 
also note that increasing the number of processes 
significantly decreases the I/O performance in both cases, 
but to much larger extent in NetCDF4. 

 
 
 
 
 
 
 
 
 
 
Figure	
  3:	
  The	
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  model.	
   
 
 

 
 
 
Figure	
  4:	
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   the	
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   using	
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   results	
   are	
   from	
   the	
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  model. 
 



 

D. Scaling to 1km Resolution 
Motivated by the relatively better performance of the 

PNetCDF library, we decided to implement large file support 
for PNetCDF. PISM currently only provides support for such 
high-resolution data via the NetCDF4 library.  However, 
Argonne's Parallel-NetCDF library [18, 24] also provides 
support for such high-resolution data via the CDF-5 format, 
and it was not difficult to ensure that the PNetCDF library is 
used for writing file data and metadata using the CDF5 
format. We term this approach PNetCDF/CDF5.  

Moving to the CDF5 version revealed an interesting 
feature in PISM: the Parallel-NetCDF library was never 
being used to write the metadata. This was an interesting 
phenomenon, and we discovered comments in the PISM 
source code explained that PNetCDF was not being used to 
write metadata for performance reasons. The PISM 
developers had performed some experimentation and found 
that they were able to achieve better performance with a 
hybrid approach, rather than using PNetCDF directly. The 
hybrid approach involved using NetCDF4 in the legacy 
serial mode to create the file structure and then used 
PNetCDF to write the data. 

After modifying PISM to use PNetCDF for both data and 
metadata, we attempted to run a G1km simulation, which 
requires the large file support. However, we found that PISM 
would become unresponsive while writing its output, and the 
run would not complete in a reasonable amount of time. Due 
to the cost of computational resources, we did not allow the 
simulation to run for an arbitrary amount of time to see if it 
would have completed, but rather stopped it after it had run 
for twice as long as it would have required for the equivalent 
run with NetCDF4 output.  

In order to learn more about the new implementation, we 
attempted an A10km run, and allowed it to run to 
completion. After a lengthy pause during the output phase, 
the simulation did complete, and it produced valid output. 
The results are shown in figure 5, and, as can be seen, using 
PNetCDF/CDF-5 to write meta-data and data resulted in a 
10-fold decrease in performance. To understand the reason 
for such poor performance, it is necessary to briefly discuss 
the structure and operations of CDF5 files. 

The NetCDF4 and PNetCDF libraries define two modes 
of execution when writing to a file: define-mode and data-
mode. In define-mode, the user specifies the structure of the 
dataset by defining the variables metadata. The user must 
then switch to data-mode to write the actual variable data. 
However, switching from define-mode to data-mode can be 
an expensive operation, due to the structure of a CDF file.   

The structure of a CDF5 file consists of three 
components: the header, which contains all of the metadata; 
the non-record variable section, which contains fixed-size 
variables, and the record section, which contains all record 
variables. Record variables are those that make use of the 
unlimited dimension and are therefore allowed to grow along 
that dimension.  In contrast, non-record variables are those 
that have a fixed size, which must be specified when the 
variable is defined. This ordering of these three sections must 

be maintained. Thus, if the user writes data for a record 
variable and then switches to define mode to define a new 
non-record variable, then the file must be restructured. In 
particular, the non-record section must be expanded to 
accommodate the variable, which requires that the record 
data be moved. Thus one must take care to define all 
variables before writing any data. 

Violating this pattern was the cause of the extremely poor 
performance. In the case of the G1km model, which could 
not run to completion, a single record is many gigabytes of 
data, all of which must be moved to accommodate the new 
file structure. A single record is much smaller in the A10km 
model, which did run to completion, but resulted in the 10-
fold decrease in performance shown in Figure 5. 

The PISM developers circumvented this problem by 
using the hybrid approach discussed above, and the problem 
does not occur with HDF-5.  We remedied this problem by a 
slight modification to the PISM write pattern, which resulted 
in a tremendous increase in performance.  

After diagnosing and correcting this problem, we 
returned to the 1KM Greenland model. Figure 6 shows the 
write performance using both NetCDF4 and 
PNetCDF/CDF5. As can be seen, using PNetCDF/CDF5 
resulted in a speedup in performance by approximately a 
factor of 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure	
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Figure	
   6:	
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   PNetCDF/CDF-­‐5	
   (labeled	
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  for	
  the	
  G1km	
  resolution	
  model.	
   

 
 

V. RELATED WORK 
It is well known that I/O is a frequent bottleneck in the 

performance of parallel, scientific applications [7, 8, 14, 17, 
18, 33, 34]. Through the years, a multitude of approaches 
have been developed to minimize the cost of I/O in parallel 
applications. MPI-IO  [22] defines a standard interface for 
parallel I/O as well as collective file access semantics. The 
ROMIO [33] implementation of MPI-IO introduces 
optimizations for parallel I/O, in the form of data-sieving and 
two-phase I/O. [34] 

The NetCDF4 [35], PNetCDF [18, 24], and HDF5 [11] 
libraries have been developed to make the semantics of MPI-
IO and the optimizations of ROMIO more accessible to 
application developers. They allow the application developer 
to represent the application data in a format that is 
convenient on the application level, and they provide 
functionality to translate between the application's data-
model and a serialized data-model that will fit in a file. The 
Adaptable Input/Output System (ADIOS) [1] is another 
system that seeks to reduce the cost of I/O in parallel 
applications. It introduces a new file format, but also 
provides tools to translate this format to and from the 
NetCDF and HDF5 formats. 

In this work, we have made use of several of the libraries 
and techniques described above to analyze and improve the 
I/O performance of PISM. In [14], a similar study was 
performed, focusing on different parallel models and 
exclusively using the HDF5 format. In [18], the performance 
of the initial implementation of PNetCDF was compared to 
the (then serial) NetCDF library as well as the parallel HDF5 
library using benchmark applications. To the best of our 
knowledge, no other studies of the I/O performance of ice 
sheet models have been performed. 

VI. DISCUSSION 
It is important to re-iterate that our goal was to utilize 

PISM out of the box and did not attempt to optimize any of 
the I/O libraries with the one exception discussed above. 
Thus our research shows that in this important model, the 
NetCDF4 implementation provides significantly poorer 

performance than the PNetCDF implementation. There are 
several possibilities for optimization of both libraries, and 
HDF5 provides many mechanisms for performance 
enhancements [12, 14]. It would be interesting to look at the 
impact of such options, particularly since PISM is a widely 
used model in a critical domain. 

Currently, PNetCDF is not available on PISM for large 
files. One likely reason is the very poor performance 
achieved when using the writing pattern discussed above. 
This study suggests that PNetCDF can, in fact, provide 
excellent performance.  

There are several areas in which this research can be 
extended. First, we would like to utilize the optimizations 
that are available in the NetCDF4 library and determine their 
impact on performance. Similarly, we would like to spend 
more time optimizing PNetCDF through the use of Y-Lib 
[8], which has been shown to provide orders of magnitude 
performance increase over native ROMIO [33], which is the 
foundation upon which all of these libraries are based. 
Finally, we would like to utilize the ADIOS [1] platform to 
compare these and perhaps other optimization techniques.  
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