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Abs tra ct—Lustre is becoming an increasingly important file 

system for large-scale computing clusters. The problem, 

however, is that many data-intensive applications use MPI-IO 

for their I/O requirements, and MPI-IO performs poorly in a 

Lustre file system environment. While this poor performance has 

been well documented, the reasons for such performance are 

currently not well understood. Our research suggests that the 

primary performance issues have to do with the assumptions 

underpinning most of the parallel I/O optimizations implemented 

in MPI-IO, which do not appear to hold in a Lustre environment. 

Perhaps the most important assumption is that optimal 

performance is obtained by performing large, contiguous I/O 

operations. However, the research results presented in this poster 

show that this is often the worst approach to take in a Lustre file 

system. In fact, we found that the best performance is often 

achieved when each process performs a series of smaller, non-

contiguous I/O requests. In this poster, we provide experimental 

results supporting these non-intuitive ideas, and provide 

alternative approaches that significantly enhance the 

performance of MPI-IO in a Lustre file system. 

I. INTRODUCTION 

 
Large-scale computing clusters with hundreds to tens of 

thousands of processors are being increasingly used to execute 
large, data-intensive applications in several scientific domains. 
Such domains include, for example, high-resolution simulation 
of natural phenomenon, large-scale image analysis, climate 
modelling, and complex financial modelling. The I/O 
requirements of such applications can be staggering, ranging 
from terabytes to petabytes and beyond, and managing such 
massive data sets has become a significant bottleneck in 
application performance. Thus solving this I/O scalability 
problem has become a critical challenge in high-performance 
computing.  

This issue has led to the development of powerful parallel file 
systems that can provide tremendous aggregate storage capacity 
and highly concurrent access to the underlying data (e.g., Lustre 
[1], GPFS [15], Panasas [7]). Another important research path 
has been the development of parallel I/O interfaces with high-
performance implementations that can work with the file system 
API to optimise access to the underlying storage. An important 
combination of file system/parallel I/O interface is Lustre, an 

object-based, parallel file system developed for extreme-scale 
computing clusters, and MPI-IO [5], which is generally 
considered to be the most widely-used parallel I/O API. The 
problem, however, is that there is currently no implementation 
of the MPI-IO standard that is optimised for the Lustre file 
system, and the performance of current implementations is, by 
and large, quite poor [3, 12, 21]. Given the wide spread use of 
MPI-IO, and the expanding utilization of the Lustre file system, 
it is important to provide an MPI-IO implementation that can 
provide high-performance, scalable I/O to MPI applications 
executing in the Lustre file system environment. 

There are two key challenges associated with achieving high 
performance in a Lustre environment. First, Lustre exports only 
the POSIX file system API, which was not designed for a 
parallel I/O environment and provides little support for parallel 
I/O optimizations. This has led to the development of 
approaches (or “workarounds”) that can circumvent (most of) 
the performance problems inherent in POSIX-based file systems 
and provide significantly enhanced performance (e.g., two-phase 
I/O[17, 18], data-sieving[20], DataType I/O [10]). The second 
problem is that the assumptions upon which most of these 
optimizations are based do not hold in a Lustre environment.  

The most important and widely held assumption, and the 
primary focus of this poster, is that performing large, contiguous 
I/O operations maximizes I/O performance. The research 
presented here provides evidence that this may, in fact, be the 
worst approach in a Lustre file system environment. In fact, the 
best performance may be achieved when each process performs 
a series of smaller, non-contiguous I/O requests. 

These are clearly non-intuitive results, and one focus of this 
poster is to provide empirical results that support this 
contention. The other goal is to explore alternative 
implementations that can provide significantly enhanced 
performance. The longer-term goal of this research is to provide 
a high-performance implementation of MPI-IO that is 
optimized for the Lustre file system. Toward this end, we are 
integrating the results of this research into ROMIO[20], a high-
performance implementation of the MPI-IO standard developed 
and maintained at Argonne National Laboratory. We chose to 
work with ROMIO for three reasons: it is the most widely used 
implementation of MPI-IO, it is highly portable, and it provides 



a powerful parallel I/O infrastructure that can be leveraged in 
this research.  

In this poster, we investigate the performance of collective 
write operations in two implementations of the MPI-IO 
standard on two Lustre file systems. We focus on the collective 
write operations because they represent one of the most 
important parallel I/O optimizations defined in the MPI-IO 
standard, and because they have been identified as exhibiting 
particularly poor performance in a Lustre file system.  

There are two primary contributions of this poster 
presentation. First, it increases our understanding of the 
interactions between current MPI-IO implementations, the 
underlying assumptions upon which they are built, and the 
Lustre architecture. Second, it shows how the implementation of 
collective I/O operations can be more closely aligned with 
Lustre’s object-based storage architecture, resulting in significant 
increases in performance. We believe this poster will be of 
interest to a large segment of the high-performance computing 
community given the importance of both MPI-IO and Lustre to 
large-scale, scientific computing.  

 

II. BACKGROUND 

 
The I/O requirements of parallel, data-intensive applications 

have become the major bottleneck in many areas of scientific 
computing. The reason for such poor performance has been 
largely attributed to the I/O access patterns exhibited by 
scientific applications. In particular, it has been well established 
that each process tends to make a large number of small I/O 
requests, incurring on each such request the high latency of 
performing I/O across a network [9, 11, 19]. However, it is 
often the case that in the aggregate, the processes are performing 
large, contiguous I/O operations, which historically have made 
much better use of the parallel I/O hardware.  

MPI-IO [5], the I/O component of the MPI2 standard, was 
developed (in part at least) to take advantage of such global 
information to enhance parallel I/O performance. One of the 
most important mechanisms through which such global 
information can be obtained and leveraged is a set of collective 
I/O operations, where each process provides to the 
implementation information about its individual I/O request. 
The rich and flexible parallel I/O API defined in MPI-IO 
facilitates collective operations by enabling the individual 
processes to express complex parallel I/O access patterns in a 
single request (e.g., non-contiguous access patterns). Once the 
implementation has a picture of the global I/O request, it can 
combine the individual requests and submit them in a way that 
optimizes the particular parallel I/O subsystem.  

It is generally agreed that the most widely used 
implementation of the MPI-IO standard is ROMIO [20], which 
is integrated into the MPICH2 MPI library developed and 
maintained at Argonne National Laboratory. ROMIO provides 
key optimizations for enhanced performance, and is 
implemented on a wide range of architectures and file systems.  

The portability of ROMIO stems from an internal layer called 
ADIO [16] upon which ROMIO implements the MPI-IO 
interface. ADIO implements the file system dependent features, 

and is thus implemented separately for each file system (see 
Figure 1).  

 

 

Figure 1: ROMIO is implemented on top of ADIO, which is implemented 

separately for each file system. 

 
ROMIO implements the collective I/O operations using a 
technique termed two-phase I/O [18, 20]. Consider a collective 
write operation. In the first phase, the processes exchange their 
individual I/O requests to determine the global request. The 
processes then use inter-process communication to re-distribute 
the data to a set of aggregator processes. The data is re-
distributed such that each aggregator process has a large, 
contiguous chunk of data that can be written to the file system 
in a single operation. The parallelism comes from the aggregator 
processes performing their writes concurrently. This is 
successful because it is significantly more expensive to write to 
the file system than it is to perform inter-process 
communication.  

  

III. LUSTRE ARCHITECTURE 

Lustre consists of three primary components: file system 
clients (that request I/O services), object storage servers (OSSs) 
(that provide I/O services), and meta-data servers that manage 
the name space of the file system. Each OSS can support 
multiple Object Storage Targets (OSTs) that handle the duties of 
object storage and management. The scalability of Lustre is 
derived from two primary sources. First, file meta-data 
operations are de-coupled from file I/O operations. The meta-
data is stored separately from the file data, and once a client has 
obtained the meta-data it communicates directly with the OSSs 
in subsequent I/O operations. This provides significant 
parallelism because multiple clients can interact with multiple 
storage servers in parallel. The second driver for scalable 
performance is the striping of files across multiple OSTs, which 
provides parallel access to shared files by multiple clients.  

Lustre provides APIs allowing the application to set the stripe 
size, the number of OSTs across which the file will be striped 
(the stripe width), the index of the OST in which the first stripe 
will be stored, and to retrieve the striping information for a 
given file. The stripe size is set when the file is opened and 
cannot be modified once set. Lustre assigns stripes to OSTs in a 
round-robin fashion, beginning with the designated OST index.  

The POSIX file consistency semantics are enforced through a 
distributed locking system, where each OST acts as a lock server 
for the objects it controls. The locking protocol requires that a 
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lock be obtained before any file data can be modified or written 
into the client-side cache. While the Lustre documentation states 
that the locking mechanism can be disabled for higher 
performance [4], we have never observed such improvement by 
doing so.  

 

A. Known issues with Parallel I/O on Lustre 

 

Previous research efforts with parallel I/O on the Lustre file 
system have shed some light on factors contributing to the poor 
performance of MPI-IO, including the problems caused by I/O 
accesses that are not aligned on stripe boundaries [13, 14]. 
Figure 2 helps to illustrate the problem that arises when I/O 
accesses cross stripe boundaries. Assume the two processes are 
writing to non-overlapping sections of the file; however because 
the requests are not aligned on stripe boundaries, both processes 
are accessing different regions of stripe 1. Because of Lustre’s 
locking protocol, each process must acquire the lock associated 
with the stripe, which results in unnecessary lock contention. 
Thus the writes to stripe 1 must be serialized, resulting in 
suboptimal performance. 

 

Figure 2: Crossing Stripe Boundaries with Lustre 
 

An ADIO driver for Lustre has recently been added to 
ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This 
new Lustre driver adds support via hints for user settable 
features such as Lustre striping and direct I/O. In addition, the 
driver insures that disk accesses are aligned on Lustre stripe 
boundaries.  

However, our research suggests that these modifications are 
not sufficient to significantly improve the performance of MPI-
IO. This is because we believe the primary issue is the way the 
individual I/O requests are aggregated in a collective write 
operation, where the combined request is presented as large, 
contiguous data accesses.  

The problem with performing large, contiguous writes is that 
it can cause significant contention at the network layer, the OSS 
level, and the OST level. The point may be best explained with a 
simple example.  

Consider a two-phase collective write operation with the 
following parameters: four processes, a 32 MB file, a stripe size 
of 1 MB (within the recommended range of 1 to 4 MBs), eight 
OSTs, and a stripe width of eight. Assume the four processes 
have completed the first phase of the collective write operation, 
and that each process is ready to write a contiguous eight MB 
block to disk. Thus process P0 will write stripes 0 – 7, process 

P1 will write stripes 8 – 15, and so forth. This communication 
pattern is shown in Figure 3 below.  

Two problems become apparent immediately. First, every 
process is communicating with every OSS. Second, every 
process must obtain eight locks. Thus there is significant 
communication overhead (each process and each OSS must 
multiplex four separate, concurrent communication channels), 
and there is contention at each lock manager for locking services 
(but not for the locks themselves). While this is a trivial example, 
one can imagine significant degradation in performance as the 
file size, number of processes, and number of OSTs becomes 
large. Thus one flaw in the assumption that performing large, 
contiguous I/O operations provides the best parallel I/O 
performance is that it does not account for the contention of file 
system resources (including the network).  

  

Figure 3: Communication pattern for two-phase I/O with Lustre. 

IV. AGGREGATION PATTERNS 

 
The key question then is whether the poor performance 

exhibited by MPI-IO collective write operations is a result of the 
contention created by (in the worst case) each aggregator 
process communicating with each OST, and, if so, can the data 
aggregation patterns be modified in a way that will result in 
better performance. In this section, we investigate such 
alternative approaches.  

We illustrate possible alternative approaches using a set of 
simple examples, and assume the following system 
characteristics: The file to be written is 16 MB, the stripe size is 
1 MB, and there are four OSTs. We assume a stripe width of 
four, meaning that the stripes are allocated among the four 
OSTs in a round robin fashion. This is shown in Figure 4.  

 
 
 
 
 

Figure 4: Allocation of Data Stripes to OSTs 

In this figure, the blocks represent the individual data stripes 
and are labelled with the OST on which that stripe is stored. 
Thus, for example, data stripe 0 is stored on OST 0, stripe 5 is 
stored on OST 1, stripe 6 is stored on OST 2, and so forth. 

Assume there are four aggregator processes, and that we are 
in the first phase of a two-phase collective write operation. As 
noted above, the current approach is to divide the file into four, 
contiguous (and non-overlapping) file regions, and to assign to 
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each aggregator one such region. This pattern is shown in Figure 
5.  

 
 
 
 
 
 
 
 
 

Figure 5: Two-phase I/O file access pattern. Each processor must interact with 

each OST.  

 
We can reduce the number of OSTs with which each 

aggregator process communicates by modifying the data 
aggregation pattern. Assume the size of the blocks to be written 
is increased to 2 MB, and that the blocks are allocated to the 
aggregator processes in a round robin pattern, as shown in 
Figure 6. In this case, each aggregator writes one block of data, 
skips over the next three blocks in the file (i.e., the next six data 
stripes), then writes its second block of data, and so forth. Thus 
each aggregator process is still responsible for 4 MB of data, but 
because of the altered write pattern, now only communicates 
with two OSTs rather than four. The trade-off is that each 
process must make two separate I/O requests to write its data to 
disk. Because the number of aggregators is a multiple of the 
number of OSTs and the block size is a multiple of the stripe 
size, the aggregator processes will communicate with the same 
two OSTs throughout the collective write operation. 

 

Figure 6: Reducing the communication burden using smaller accesses. In this 

case, each processor communicates with two of the OSTs. 

 
We can further reduce the number of OSTs with which an 

aggregator process must communicate by reducing the block 
size to 1 MB (the stripe size). Again, the blocks to be written are 
allocated round robin among the aggregators. As in the example 
above, each aggregator is still responsible for 4 MB of data, but 
only communicates with a single OST during the collective 
operation. The trade-off is that each aggregator must now make 
four individual I/O requests, each of which writes 1 MB of data 
to the file.  

These alternative data aggregation strategies are widely known 
in the high-performance parallel I/O community, and are simply 
non-contiguous I/O operations. In fact, much of the research in 
parallel I/O has focused on developing alternative techniques, 
such as two-phase I/O, that aggregate such small, non-
contiguous I/O requests to make larger, contiguous requests 
that are presented to the file system. In the next section, we 

provide experimental data comparing the performance of these 
approaches to parallel I/O. 

It is worth noting that a seemingly simple approach to 
alleviating such communication overhead would be to increase 
the stripe size such that it matches the large contiguous accesses 
performed by aggregators. While this might be effective in some 
cases, there are two difficulties with this solution in general. First, 
it is only possible to adjust the striping parameters for a Lustre 
file at creation time, so such a strategy cannot be applied to 
existing files. Second, the creation of exceedingly large stripes 
may cause performance issues if the file is to be read by another 
application with a different aggregation method.  

 

V. EXPERIMENTAL DESIGN 

 
We were interested in the impact of the data aggregation 

patterns on the throughput obtained when performing a 
collective write operation in a Lustre file system. To investigate 
this issue, we performed a set of experiments on two large-scale 
Lustre file systems at two different research facilities on the 
TeraGrid[8]. The Lustre file systems used in this research were 
located at two of the facilities on the TeraGrid: Indiana 
University and the Texas Advanced Computing Center at the 
University of Texas. 

At Indiana University, we used the Big Red cluster that 
consisted of 768 IBM JS21 Blades, each with two dual-core 
PowerPC 970 MP processors and 8 GB of memory. The 
compute nodes were connected to Lustre through 24 Myricom 
10 gigabit Ethernet cards. The Lustre file system (Data 
Capacitor) is mounted on Big Red, and consists of 52 Dell 
servers running Red Hat Enterprise Linux, 12 DataDirect 
Networks S29550, and 30 DataDirect Networks 48 bay SATA 
disk chassis, for a total capacity of 535 Terabytes. The MPI 
implementation was MPICH2. There were 96 OSTs on the Data 
Capacitor.  

The other Lustre installation was Ranger, located at the Texas 
Advanced Computing Center (TACC) at the University of Texas. 
There are 3,936 SunBlade x6420 blade nodes on Ranger, each of 
which contains four quad-core AMD Opteron processors for a 
total of 62,976 cores.  Each blade is running a 2.6.18.8 x86_64 
Linux kernel from kernel.org. The Lustre parallel file system was 
built on 72 Sun x4500 disk servers, each containing 48 SATA 
drives for an aggregate storage capacity of 1.73 Petabytes. On 
the Scratch file system used in these experiments, there were 50 
OSSs, each of which hosted six OSTs. The bottleneck in the 
system was a 1-Gigabyte per second throughput from the OSSs 
to the network.  

We varied both the number of processes participating in the 
collective write operation and the data aggregation patterns.  For 
these experiments, we categorize such patterns based on the 
number of OSTs with which each aggregator process 
communicated. Thus, for example, the write pattern shown in 
Figure 5 would be termed a 4-OST pattern, and that shown in 
Figure 6 would be categorized as a 2-OST pattern.  

On Big Red, we were able to obtain 104 nodes, and, for ease 
of experimentation, used 52 OSTs, a 13-GB file, and 
experimented with 13, 26, 52, and 104 aggregator processes. On 
Ranger, we utilized between 50 and 200 nodes with a 50-GB file, 
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and 50, 100, and 150 OSTs. All of the tests used one processor 
per node. In these experiments, we simulated two-phase I/O by 
performing only the writes corresponding to the various 
aggregation patterns under consideration. That is, the 
appropriate data was assigned to each process without 
performing data re-distribution. We believe this to be valid 
based on the fact that the cost of writing to disk is orders of 
magnitude greater than the cost of inter-processor 
communication. The comparison with the existing MPI 
implementations (MPICH2 on Big Red and MVAPICH-2 on 
Ranger) was done by using a collective call to 
MPI_File_write_at_all. However, the data was 
distributed on the processes in a way that conformed to the 
expected aggregation pattern, and thus no data re-distribution 
was required in that case either. In all cases, the writes were 
aligned on stripe and lock boundaries. 
 

VI. EXPERIMENTAL RESULTS 

 
The results of the experiments are shown in Figures 7 and 8. 

First, consider the experimental data obtained from Big 
Red/Data Capacitor. The two most striking results are that the 
2-OST pattern consistently provided the best performance, and 
the 16-OST pattern and MPI consistently provided the worst 
performance. While the MPI results may have been affected by 
some additional processing in the two-phase I/O operation, it 
did not have to perform any data re-distribution. Thus we 
assume that its poor performance is due primarily to its 
aggregation patterns. This is supported by the fact that the 16-
OST pattern, which included no additional processing, also 
performed quite poorly, especially compared to the other OST 
aggregation patterns.  

 
 
 
 
 
 
 
 
 

 

 

Figure 7: Performance results from Big Red at Indiana University 

The results from Ranger are even more striking. As can be 
seen, there was a tremendous increase in performance 
(compared to MPI-IO) with the 1-OST pattern when the 
number of aggregator processes was equal to the number of 
OSTs. In particular, there was a two-fold increase in 
performance in the 50-OST configuration, and a five-fold 
increase in both the 100-OST and 150-OST patterns. While 
MPI-IO did not necessarily provide the worst performance 
(generally obtained by the 16- and 32-OST patterns), its 
performance could be described as lacklustre in all 
configurations.  

  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 8: Performance results from Ranger at the University of Texas 

B. Discussion 

The problem with performing large, contiguous I/O 
operations in a Lustre environment is that it leads to a many-to-
many communication pattern between aggregator processes and 
OSTs. The fact that MPI-IO, and the 16- and 32-OST write 
patterns consistently provided the worst performance strongly 
suggests that it was, in fact, the overhead of multiple processes 
talking to multiple OSTs that was responsible for the poor 
performance. This was further supported by the fact that the 1- 
and 2-OST patterns provided the best performance on both 
architectures.  

These results also lend strong support to other studies on 
Lustre showing that maximum I/O performance is obtained 
when individual processes write to independent files 
concurrently [4, 21]. Further, it helps explain the commonly held 
belief of (at least some) Lustre developers that parallel I/O is 
not necessary in a Lustre environment and does little to improve 
performance [2]. While we do not subscribe to this view, we 
now at least understand its origins.  

These results do, however, indicate that it is worthwhile to go 
down a (somewhat) different path in the development of a high-
performance ADIO driver for Lustre. While it is certainly 
necessary to ensure that all I/O requests are properly aligned 
with the data striping and locking patterns, these results show 
that doing so is not sufficient to significantly improve the 
performance of MPI-IO. What appears to be also necessary is 
the awareness and management of the communication patterns 
between the aggregator processes and the OSTs. Our current 
research is focusing on the incorporation of these insights into a 
new ADIO driver for the Lustre file system.  

VII. RELATED WORK 

 
The most closely related work is from Yu et al. [21], who 

implemented the MPI-IO collective write operations using the 
Lustre file-join mechanism. In this approach, the I/O processes 
write separate, independent files in parallel, and then merge 



these files using the Lustre file-join mechanism. They showed 
that this approach significantly improved the performance of the 
collective write operation, but that the reading of a previously 
joined file resulted in low I/O performance. As noted by the 
authors, correcting this poor performance will require an 
optimization of the way a joined file’s extent attributes are 
managed.  The authors also provide an excellent performance 
study of MPI-IO on Lustre.  

The approach we are pursuing does not require multiple 
independent writes to separate files, but does limit the number 
of Object Storage Targets (OST) with which a given process 
communicates. This maintains many of the advantages of 
writing to multiple independent files separately, but does not 
require the joining of such files. The performance analysis 
presented in this paper complements and extends the analysis 
performed by Yu et al.  

Larkin and Fahey [12] provide an excellent analysis of 
Lustre’s performance on the Cray XT3/XT4, and, based on 
such analysis, provide some guidelines to maximize I/O 
performance on this platform. They observed, for example, that 
to achieve peak performance it is necessary to use large buffer 
sizes, to have at least as many IO processes as OSTs, and, that at 
very large scale (i.e., thousands of clients), only a subset of the 
processes should perform I/O. While our research reaches some 
of the same conclusions on different architectural platforms, 
there are two primary distinctions. First, our research is focused 
on understanding of the poor performance of MPI-IO (or, more 
particularly, ROMIO) in a Lustre environment, and on 
implementing a new ADIO driver for object-based file systems 
such as Lustre. Second, our research is investigating both 
contiguous and non-contiguous access patterns while this related 
work focuses on contiguous access patterns only.  

In [14], it was shown that aligning the data to be written with 
the basic striping pattern improves performance. They also 
showed that it was important to align on lock boundaries. This is 

consistent with our analysis, although we expand the scope of 
the analysis significantly to study the algorithms used by MPI-IO 
(ROMIO) and determine (at least some of) the reasons for sub-
optimal performance.  

VIII. CONCLUSIONS AND FUTURE RESEARCH 

The research presented in this poster has attempted to 
develop a better understanding of the poor performance of 
MPI-IO in Lustre file systems. We hypothesized that the 
problem was related to the high overhead associated with 
writing large, contiguous blocks of data to the file system, which 
results in a many-to-many communication pattern between 
MPI-IO aggregation processes and OSTs. We devised a set of 
experiments to test our hypothesis, and, based on the results, 
believe that this provides a very plausible explanation for the 
perform issues. Our current research is focused on the 
development of collective I/O algorithms that take such 
overhead costs into account when determining the most 
appropriate data aggregation patterns. Our longer-term goal is to 
incorporate such algorithms into an ADIO driver that is 
optimised for Lustre file systems.  

Additional performance studies of Lustre itself need to be 
undertaken to develop a better understanding of the factors 
relating to the high overhead costs of communicating with 
multiple OSTs. Network contention and lock protocol 
processing are two likely causes, but there may be other 
contributing factors that are not currently known. Finally, we are 
working to develop a methodology for determining the 
particular OST pattern that will provide the best performance 
for a given architecture.  
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