

Towards an Understanding of the Performance of

MPI-IO in Lustre File Systems
Jeremy Logan, Phillip Dickens

Department of Computer Science, University of Maine

Orono, Maine, USA
 dickens@umcs.maine.edu
 jeremy.logan@maine.edu

Abs tra ct—Lustre is becoming an increasingly important file

system for large-scale computing clusters. The problem,

however, is that many data-intensive applications use MPI-IO

for their I/O requirements, and MPI-IO performs poorly in a

Lustre file system environment. While this poor performance has

been well documented, the reasons for such performance are

currently not well understood. Our research suggests that the

primary performance issues have to do with the assumptions

underpinning most of the parallel I/O optimizations implemented

in MPI-IO, which do not appear to hold in a Lustre environment.

Perhaps the most important assumption is that optimal

performance is obtained by performing large, contiguous I/O

operations. However, the research results presented in this poster

show that this is often the worst approach to take in a Lustre file

system. In fact, we found that the best performance is often

achieved when each process performs a series of smaller, non-

contiguous I/O requests. In this poster, we provide experimental

results supporting these non-intuitive ideas, and provide

alternative approaches that significantly enhance the

performance of MPI-IO in a Lustre file system.

I. INTRODUCTION

Large-scale computing clusters with hundreds to tens of

thousands of processors are being increasingly used to execute
large, data-intensive applications in several scientific domains.
Such domains include, for example, high-resolution simulation
of natural phenomenon, large-scale image analysis, climate
modelling, and complex financial modelling. The I/O
requirements of such applications can be staggering, ranging
from terabytes to petabytes and beyond, and managing such
massive data sets has become a significant bottleneck in
application performance. Thus solving this I/O scalability
problem has become a critical challenge in high-performance
computing.

This issue has led to the development of powerful parallel file
systems that can provide tremendous aggregate storage capacity
and highly concurrent access to the underlying data (e.g., Lustre
[1], GPFS [15], Panasas [7]). Another important research path
has been the development of parallel I/O interfaces with high-
performance implementations that can work with the file system
API to optimise access to the underlying storage. An important
combination of file system/parallel I/O interface is Lustre, an

object-based, parallel file system developed for extreme-scale
computing clusters, and MPI-IO [5], which is generally
considered to be the most widely-used parallel I/O API. The
problem, however, is that there is currently no implementation
of the MPI-IO standard that is optimised for the Lustre file
system, and the performance of current implementations is, by
and large, quite poor [3, 12, 21]. Given the wide spread use of
MPI-IO, and the expanding utilization of the Lustre file system,
it is important to provide an MPI-IO implementation that can
provide high-performance, scalable I/O to MPI applications
executing in the Lustre file system environment.

There are two key challenges associated with achieving high
performance in a Lustre environment. First, Lustre exports only
the POSIX file system API, which was not designed for a
parallel I/O environment and provides little support for parallel
I/O optimizations. This has led to the development of
approaches (or “workarounds”) that can circumvent (most of)
the performance problems inherent in POSIX-based file systems
and provide significantly enhanced performance (e.g., two-phase
I/O[17, 18], data-sieving[20], DataType I/O [10]). The second
problem is that the assumptions upon which most of these
optimizations are based do not hold in a Lustre environment.

The most important and widely held assumption, and the
primary focus of this poster, is that performing large, contiguous
I/O operations maximizes I/O performance. The research
presented here provides evidence that this may, in fact, be the
worst approach in a Lustre file system environment. In fact, the
best performance may be achieved when each process performs
a series of smaller, non-contiguous I/O requests.

These are clearly non-intuitive results, and one focus of this
poster is to provide empirical results that support this
contention. The other goal is to explore alternative
implementations that can provide significantly enhanced
performance. The longer-term goal of this research is to provide
a high-performance implementation of MPI-IO that is
optimized for the Lustre file system. Toward this end, we are
integrating the results of this research into ROMIO[20], a high-
performance implementation of the MPI-IO standard developed
and maintained at Argonne National Laboratory. We chose to
work with ROMIO for three reasons: it is the most widely used
implementation of MPI-IO, it is highly portable, and it provides

a powerful parallel I/O infrastructure that can be leveraged in
this research.

In this poster, we investigate the performance of collective
write operations in two implementations of the MPI-IO
standard on two Lustre file systems. We focus on the collective
write operations because they represent one of the most
important parallel I/O optimizations defined in the MPI-IO
standard, and because they have been identified as exhibiting
particularly poor performance in a Lustre file system.

There are two primary contributions of this poster
presentation. First, it increases our understanding of the
interactions between current MPI-IO implementations, the
underlying assumptions upon which they are built, and the
Lustre architecture. Second, it shows how the implementation of
collective I/O operations can be more closely aligned with
Lustre’s object-based storage architecture, resulting in significant
increases in performance. We believe this poster will be of
interest to a large segment of the high-performance computing
community given the importance of both MPI-IO and Lustre to
large-scale, scientific computing.

II. BACKGROUND

The I/O requirements of parallel, data-intensive applications

have become the major bottleneck in many areas of scientific
computing. The reason for such poor performance has been
largely attributed to the I/O access patterns exhibited by
scientific applications. In particular, it has been well established
that each process tends to make a large number of small I/O
requests, incurring on each such request the high latency of
performing I/O across a network [9, 11, 19]. However, it is
often the case that in the aggregate, the processes are performing
large, contiguous I/O operations, which historically have made
much better use of the parallel I/O hardware.

MPI-IO [5], the I/O component of the MPI2 standard, was
developed (in part at least) to take advantage of such global
information to enhance parallel I/O performance. One of the
most important mechanisms through which such global
information can be obtained and leveraged is a set of collective
I/O operations, where each process provides to the
implementation information about its individual I/O request.
The rich and flexible parallel I/O API defined in MPI-IO
facilitates collective operations by enabling the individual
processes to express complex parallel I/O access patterns in a
single request (e.g., non-contiguous access patterns). Once the
implementation has a picture of the global I/O request, it can
combine the individual requests and submit them in a way that
optimizes the particular parallel I/O subsystem.

It is generally agreed that the most widely used
implementation of the MPI-IO standard is ROMIO [20], which
is integrated into the MPICH2 MPI library developed and
maintained at Argonne National Laboratory. ROMIO provides
key optimizations for enhanced performance, and is
implemented on a wide range of architectures and file systems.

The portability of ROMIO stems from an internal layer called
ADIO [16] upon which ROMIO implements the MPI-IO
interface. ADIO implements the file system dependent features,

and is thus implemented separately for each file system (see
Figure 1).

Figure 1: ROMIO is implemented on top of ADIO, which is implemented

separately for each file system.

ROMIO implements the collective I/O operations using a
technique termed two-phase I/O [18, 20]. Consider a collective
write operation. In the first phase, the processes exchange their
individual I/O requests to determine the global request. The
processes then use inter-process communication to re-distribute
the data to a set of aggregator processes. The data is re-
distributed such that each aggregator process has a large,
contiguous chunk of data that can be written to the file system
in a single operation. The parallelism comes from the aggregator
processes performing their writes concurrently. This is
successful because it is significantly more expensive to write to
the file system than it is to perform inter-process
communication.

III. LUSTRE ARCHITECTURE

Lustre consists of three primary components: file system
clients (that request I/O services), object storage servers (OSSs)
(that provide I/O services), and meta-data servers that manage
the name space of the file system. Each OSS can support
multiple Object Storage Targets (OSTs) that handle the duties of
object storage and management. The scalability of Lustre is
derived from two primary sources. First, file meta-data
operations are de-coupled from file I/O operations. The meta-
data is stored separately from the file data, and once a client has
obtained the meta-data it communicates directly with the OSSs
in subsequent I/O operations. This provides significant
parallelism because multiple clients can interact with multiple
storage servers in parallel. The second driver for scalable
performance is the striping of files across multiple OSTs, which
provides parallel access to shared files by multiple clients.

Lustre provides APIs allowing the application to set the stripe
size, the number of OSTs across which the file will be striped
(the stripe width), the index of the OST in which the first stripe
will be stored, and to retrieve the striping information for a
given file. The stripe size is set when the file is opened and
cannot be modified once set. Lustre assigns stripes to OSTs in a
round-robin fashion, beginning with the designated OST index.

The POSIX file consistency semantics are enforced through a
distributed locking system, where each OST acts as a lock server
for the objects it controls. The locking protocol requires that a

ROMIO

ADIO

POSIX PVFS GPFS Lustre OBFS

lock be obtained before any file data can be modified or written
into the client-side cache. While the Lustre documentation states
that the locking mechanism can be disabled for higher
performance [4], we have never observed such improvement by
doing so.

A. Known issues with Parallel I/O on Lustre

Previous research efforts with parallel I/O on the Lustre file
system have shed some light on factors contributing to the poor
performance of MPI-IO, including the problems caused by I/O
accesses that are not aligned on stripe boundaries [13, 14].
Figure 2 helps to illustrate the problem that arises when I/O
accesses cross stripe boundaries. Assume the two processes are
writing to non-overlapping sections of the file; however because
the requests are not aligned on stripe boundaries, both processes
are accessing different regions of stripe 1. Because of Lustre’s
locking protocol, each process must acquire the lock associated
with the stripe, which results in unnecessary lock contention.
Thus the writes to stripe 1 must be serialized, resulting in
suboptimal performance.

Figure 2: Crossing Stripe Boundaries with Lustre

An ADIO driver for Lustre has recently been added to
ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This
new Lustre driver adds support via hints for user settable
features such as Lustre striping and direct I/O. In addition, the
driver insures that disk accesses are aligned on Lustre stripe
boundaries.

However, our research suggests that these modifications are
not sufficient to significantly improve the performance of MPI-
IO. This is because we believe the primary issue is the way the
individual I/O requests are aggregated in a collective write
operation, where the combined request is presented as large,
contiguous data accesses.

The problem with performing large, contiguous writes is that
it can cause significant contention at the network layer, the OSS
level, and the OST level. The point may be best explained with a
simple example.

Consider a two-phase collective write operation with the
following parameters: four processes, a 32 MB file, a stripe size
of 1 MB (within the recommended range of 1 to 4 MBs), eight
OSTs, and a stripe width of eight. Assume the four processes
have completed the first phase of the collective write operation,
and that each process is ready to write a contiguous eight MB
block to disk. Thus process P0 will write stripes 0 – 7, process

P1 will write stripes 8 – 15, and so forth. This communication
pattern is shown in Figure 3 below.

Two problems become apparent immediately. First, every
process is communicating with every OSS. Second, every
process must obtain eight locks. Thus there is significant
communication overhead (each process and each OSS must
multiplex four separate, concurrent communication channels),
and there is contention at each lock manager for locking services
(but not for the locks themselves). While this is a trivial example,
one can imagine significant degradation in performance as the
file size, number of processes, and number of OSTs becomes
large. Thus one flaw in the assumption that performing large,
contiguous I/O operations provides the best parallel I/O
performance is that it does not account for the contention of file
system resources (including the network).

Figure 3: Communication pattern for two-phase I/O with Lustre.

IV. AGGREGATION PATTERNS

The key question then is whether the poor performance

exhibited by MPI-IO collective write operations is a result of the
contention created by (in the worst case) each aggregator
process communicating with each OST, and, if so, can the data
aggregation patterns be modified in a way that will result in
better performance. In this section, we investigate such
alternative approaches.

We illustrate possible alternative approaches using a set of
simple examples, and assume the following system
characteristics: The file to be written is 16 MB, the stripe size is
1 MB, and there are four OSTs. We assume a stripe width of
four, meaning that the stripes are allocated among the four
OSTs in a round robin fashion. This is shown in Figure 4.

Figure 4: Allocation of Data Stripes to OSTs

In this figure, the blocks represent the individual data stripes
and are labelled with the OST on which that stripe is stored.
Thus, for example, data stripe 0 is stored on OST 0, stripe 5 is
stored on OST 1, stripe 6 is stored on OST 2, and so forth.

Assume there are four aggregator processes, and that we are
in the first phase of a two-phase collective write operation. As
noted above, the current approach is to divide the file into four,
contiguous (and non-overlapping) file regions, and to assign to

Process P0 Process P1 Process P2 Process P3

0 8

16 24

OSS

OSS

OSS

OSS

7 15

23 31
6 14

22 30
5 13

21 29
4 12

20 28

3 11

19 27

2 10

18 26
1 9

17 25

 OST 0 OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File
1 MB

Process 0

Stripe 0 Stripe 1

OST 2

Stripe 2

Process 1

OST 1

OST 0

each aggregator one such region. This pattern is shown in Figure
5.

Figure 5: Two-phase I/O file access pattern. Each processor must interact with

each OST.

We can reduce the number of OSTs with which each

aggregator process communicates by modifying the data
aggregation pattern. Assume the size of the blocks to be written
is increased to 2 MB, and that the blocks are allocated to the
aggregator processes in a round robin pattern, as shown in
Figure 6. In this case, each aggregator writes one block of data,
skips over the next three blocks in the file (i.e., the next six data
stripes), then writes its second block of data, and so forth. Thus
each aggregator process is still responsible for 4 MB of data, but
because of the altered write pattern, now only communicates
with two OSTs rather than four. The trade-off is that each
process must make two separate I/O requests to write its data to
disk. Because the number of aggregators is a multiple of the
number of OSTs and the block size is a multiple of the stripe
size, the aggregator processes will communicate with the same
two OSTs throughout the collective write operation.

Figure 6: Reducing the communication burden using smaller accesses. In this

case, each processor communicates with two of the OSTs.

We can further reduce the number of OSTs with which an

aggregator process must communicate by reducing the block
size to 1 MB (the stripe size). Again, the blocks to be written are
allocated round robin among the aggregators. As in the example
above, each aggregator is still responsible for 4 MB of data, but
only communicates with a single OST during the collective
operation. The trade-off is that each aggregator must now make
four individual I/O requests, each of which writes 1 MB of data
to the file.

These alternative data aggregation strategies are widely known
in the high-performance parallel I/O community, and are simply
non-contiguous I/O operations. In fact, much of the research in
parallel I/O has focused on developing alternative techniques,
such as two-phase I/O, that aggregate such small, non-
contiguous I/O requests to make larger, contiguous requests
that are presented to the file system. In the next section, we

provide experimental data comparing the performance of these
approaches to parallel I/O.

It is worth noting that a seemingly simple approach to
alleviating such communication overhead would be to increase
the stripe size such that it matches the large contiguous accesses
performed by aggregators. While this might be effective in some
cases, there are two difficulties with this solution in general. First,
it is only possible to adjust the striping parameters for a Lustre
file at creation time, so such a strategy cannot be applied to
existing files. Second, the creation of exceedingly large stripes
may cause performance issues if the file is to be read by another
application with a different aggregation method.

V. EXPERIMENTAL DESIGN

We were interested in the impact of the data aggregation

patterns on the throughput obtained when performing a
collective write operation in a Lustre file system. To investigate
this issue, we performed a set of experiments on two large-scale
Lustre file systems at two different research facilities on the
TeraGrid[8]. The Lustre file systems used in this research were
located at two of the facilities on the TeraGrid: Indiana
University and the Texas Advanced Computing Center at the
University of Texas.

At Indiana University, we used the Big Red cluster that
consisted of 768 IBM JS21 Blades, each with two dual-core
PowerPC 970 MP processors and 8 GB of memory. The
compute nodes were connected to Lustre through 24 Myricom
10 gigabit Ethernet cards. The Lustre file system (Data
Capacitor) is mounted on Big Red, and consists of 52 Dell
servers running Red Hat Enterprise Linux, 12 DataDirect
Networks S29550, and 30 DataDirect Networks 48 bay SATA
disk chassis, for a total capacity of 535 Terabytes. The MPI
implementation was MPICH2. There were 96 OSTs on the Data
Capacitor.

The other Lustre installation was Ranger, located at the Texas
Advanced Computing Center (TACC) at the University of Texas.
There are 3,936 SunBlade x6420 blade nodes on Ranger, each of
which contains four quad-core AMD Opteron processors for a
total of 62,976 cores. Each blade is running a 2.6.18.8 x86_64
Linux kernel from kernel.org. The Lustre parallel file system was
built on 72 Sun x4500 disk servers, each containing 48 SATA
drives for an aggregate storage capacity of 1.73 Petabytes. On
the Scratch file system used in these experiments, there were 50
OSSs, each of which hosted six OSTs. The bottleneck in the
system was a 1-Gigabyte per second throughput from the OSSs
to the network.

We varied both the number of processes participating in the
collective write operation and the data aggregation patterns. For
these experiments, we categorize such patterns based on the
number of OSTs with which each aggregator process
communicated. Thus, for example, the write pattern shown in
Figure 5 would be termed a 4-OST pattern, and that shown in
Figure 6 would be categorized as a 2-OST pattern.

On Big Red, we were able to obtain 104 nodes, and, for ease
of experimentation, used 52 OSTs, a 13-GB file, and
experimented with 13, 26, 52, and 104 aggregator processes. On
Ranger, we utilized between 50 and 200 nodes with a 50-GB file,

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File

P0

OSTs:

0,1

P1

OSTs:

2,3

P2

OSTs:

0,1

P3

OSTs:

2,3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File

P0

OSTs:

0,1,2,3

P1

OSTs:

0,1,2,3

P2

OSTs:

0,1,2,3

P3

OSTs:

0,1,2,3

Aggregators

and 50, 100, and 150 OSTs. All of the tests used one processor
per node. In these experiments, we simulated two-phase I/O by
performing only the writes corresponding to the various
aggregation patterns under consideration. That is, the
appropriate data was assigned to each process without
performing data re-distribution. We believe this to be valid
based on the fact that the cost of writing to disk is orders of
magnitude greater than the cost of inter-processor
communication. The comparison with the existing MPI
implementations (MPICH2 on Big Red and MVAPICH-2 on
Ranger) was done by using a collective call to
MPI_File_write_at_all. However, the data was
distributed on the processes in a way that conformed to the
expected aggregation pattern, and thus no data re-distribution
was required in that case either. In all cases, the writes were
aligned on stripe and lock boundaries.

VI. EXPERIMENTAL RESULTS

The results of the experiments are shown in Figures 7 and 8.

First, consider the experimental data obtained from Big
Red/Data Capacitor. The two most striking results are that the
2-OST pattern consistently provided the best performance, and
the 16-OST pattern and MPI consistently provided the worst
performance. While the MPI results may have been affected by
some additional processing in the two-phase I/O operation, it
did not have to perform any data re-distribution. Thus we
assume that its poor performance is due primarily to its
aggregation patterns. This is supported by the fact that the 16-
OST pattern, which included no additional processing, also
performed quite poorly, especially compared to the other OST
aggregation patterns.

Figure 7: Performance results from Big Red at Indiana University

The results from Ranger are even more striking. As can be
seen, there was a tremendous increase in performance
(compared to MPI-IO) with the 1-OST pattern when the
number of aggregator processes was equal to the number of
OSTs. In particular, there was a two-fold increase in
performance in the 50-OST configuration, and a five-fold
increase in both the 100-OST and 150-OST patterns. While
MPI-IO did not necessarily provide the worst performance
(generally obtained by the 16- and 32-OST patterns), its
performance could be described as lacklustre in all
configurations.

Figure 8: Performance results from Ranger at the University of Texas

B. Discussion

The problem with performing large, contiguous I/O
operations in a Lustre environment is that it leads to a many-to-
many communication pattern between aggregator processes and
OSTs. The fact that MPI-IO, and the 16- and 32-OST write
patterns consistently provided the worst performance strongly
suggests that it was, in fact, the overhead of multiple processes
talking to multiple OSTs that was responsible for the poor
performance. This was further supported by the fact that the 1-
and 2-OST patterns provided the best performance on both
architectures.

These results also lend strong support to other studies on
Lustre showing that maximum I/O performance is obtained
when individual processes write to independent files
concurrently [4, 21]. Further, it helps explain the commonly held
belief of (at least some) Lustre developers that parallel I/O is
not necessary in a Lustre environment and does little to improve
performance [2]. While we do not subscribe to this view, we
now at least understand its origins.

These results do, however, indicate that it is worthwhile to go
down a (somewhat) different path in the development of a high-
performance ADIO driver for Lustre. While it is certainly
necessary to ensure that all I/O requests are properly aligned
with the data striping and locking patterns, these results show
that doing so is not sufficient to significantly improve the
performance of MPI-IO. What appears to be also necessary is
the awareness and management of the communication patterns
between the aggregator processes and the OSTs. Our current
research is focusing on the incorporation of these insights into a
new ADIO driver for the Lustre file system.

VII. RELATED WORK

The most closely related work is from Yu et al. [21], who

implemented the MPI-IO collective write operations using the
Lustre file-join mechanism. In this approach, the I/O processes
write separate, independent files in parallel, and then merge

these files using the Lustre file-join mechanism. They showed
that this approach significantly improved the performance of the
collective write operation, but that the reading of a previously
joined file resulted in low I/O performance. As noted by the
authors, correcting this poor performance will require an
optimization of the way a joined file’s extent attributes are
managed. The authors also provide an excellent performance
study of MPI-IO on Lustre.

The approach we are pursuing does not require multiple
independent writes to separate files, but does limit the number
of Object Storage Targets (OST) with which a given process
communicates. This maintains many of the advantages of
writing to multiple independent files separately, but does not
require the joining of such files. The performance analysis
presented in this paper complements and extends the analysis
performed by Yu et al.

Larkin and Fahey [12] provide an excellent analysis of
Lustre’s performance on the Cray XT3/XT4, and, based on
such analysis, provide some guidelines to maximize I/O
performance on this platform. They observed, for example, that
to achieve peak performance it is necessary to use large buffer
sizes, to have at least as many IO processes as OSTs, and, that at
very large scale (i.e., thousands of clients), only a subset of the
processes should perform I/O. While our research reaches some
of the same conclusions on different architectural platforms,
there are two primary distinctions. First, our research is focused
on understanding of the poor performance of MPI-IO (or, more
particularly, ROMIO) in a Lustre environment, and on
implementing a new ADIO driver for object-based file systems
such as Lustre. Second, our research is investigating both
contiguous and non-contiguous access patterns while this related
work focuses on contiguous access patterns only.

In [14], it was shown that aligning the data to be written with
the basic striping pattern improves performance. They also
showed that it was important to align on lock boundaries. This is

consistent with our analysis, although we expand the scope of
the analysis significantly to study the algorithms used by MPI-IO
(ROMIO) and determine (at least some of) the reasons for sub-
optimal performance.

VIII. CONCLUSIONS AND FUTURE RESEARCH

The research presented in this poster has attempted to
develop a better understanding of the poor performance of
MPI-IO in Lustre file systems. We hypothesized that the
problem was related to the high overhead associated with
writing large, contiguous blocks of data to the file system, which
results in a many-to-many communication pattern between
MPI-IO aggregation processes and OSTs. We devised a set of
experiments to test our hypothesis, and, based on the results,
believe that this provides a very plausible explanation for the
perform issues. Our current research is focused on the
development of collective I/O algorithms that take such
overhead costs into account when determining the most
appropriate data aggregation patterns. Our longer-term goal is to
incorporate such algorithms into an ADIO driver that is
optimised for Lustre file systems.

Additional performance studies of Lustre itself need to be
undertaken to develop a better understanding of the factors
relating to the high overhead costs of communicating with
multiple OSTs. Network contention and lock protocol
processing are two likely causes, but there may be other
contributing factors that are not currently known. Finally, we are
working to develop a methodology for determining the
particular OST pattern that will provide the best performance
for a given architecture.

IX. ACKNOWLEDGMENTS

This research was funded through Grant #0702748 from the

National Science Foundation.

REFERENCES

[1]. Cluster File Systems, Inc. http://www.clustrefs.com
[2]. Frequently Asked Questions.
[3]. I/O Performance Project

http://wiki.lustre.org/index.php?title=IOPerformanceProject
[4]. Lustre: scalable, secure, robust, highly-available cluster file system.

An offshoot of AFS, CODA, and Ext2. www.lustre.org/
[5]. MPI-2: Extensions to the Message-Passing Interface. Message

Passing Interface Forum http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html

[6]. MPICH2 Home Page. http://www.mcs.anl.gov/mpi/mpich
[7]. The Panasas Home Page. http://www.panasas.com
[8]. The Teragrid Project http://www.teragrid.org
[9]. Avery Ching, Choudhary, A., Coloma, K., Liao, W.-k., Ross, R. and

Gropp, W., Noncontiguous I/O Accesses through MPI-IO. In the
Proceedings of the Third International Symposium on Cluster Computing and the
Grid (CCGrid), (2002), 104-111.

[10]. Avery Ching, Choudhary, A., Liao, W.-k., Ross, R. and Gropp, W.,
Efficient Structured Access in Parallel File Systems. In the Proceedings
of the IEEE International Conference on Cluster Computing, (2003), 326-335.

[11]. Isaila, F. and Tichy, W.F., View I/O: improving the performance of
non-contiguous I/O. In the Proceedings of the IEEE Cluster Computing
Conference, (Hong Kong).

[12]. Larkin, J. and Fahey, M. Guidelines for Efficient Parallel I/O on the
Cray XT3/XT4 CUG 2007, 2007.

[13]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A. and Kandemir,
M., Iproving MPI Independent Write Performance Using A Two-

Stage Write-Behind Buffering Method. . In the Proceedings of the Next
Generation Software (NGS) Workshop, (2007).

[14]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A. and Ward, L., An
Implementation and Evaluation of Client-Side File Caching for MPI-
IO. In the Proceedings of the International Parallel and Distried Processing
Symposium (IPDPS '07), (2007).

[15]. Schmuck, F. and Haskin, R., GPFS: A shared-disk file system for
large computing clusters. . In the Proceedings of the Conference on File and
Storage Technologies, (IBM Almaden Research Center, San Jose,
California).

[16]. Thakur, R., Gropp, W. and Lusk, E., An Abstract-Device Interface
for Implementing Portable Parallel-I/O Interfaces. In the Proceedings
of the Proc. of the 6th Symposium on the Frontiers of Massively Parallel
Computation.

[17]. Thakur, R., Gropp, W. and Lusk, E., Data Sieving and Collective
I/O in ROMIO. In the Proceedings of the Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, 182-189.

[18]. Thakur, R., Gropp, W. and Lusk, E., On Implementing MPI-IO
Portably and with High Performance. In the Proceedings of the Proc. of
the Sixth Workshop on I/O in Parallel and Distributed Systems, 23-32.

[19]. Thakur, R., Gropp, W. and Lusk, E. Optimizing Noncontiguous
Accesses in MPI-IO. Parallel Computing, 28 (1). 83-105. January, 2002.

[20]. Thakur, R., Ross, R. and Gropp, W. Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation, Technical
Memorandum ANL/MCS-TM-234, Mathematics and Computer
Science Division, Argonne National Laboratory, Revised May 2004.

[21]. Yu, W., Vetter, J., Canon, R.S. and Jiang, S., Exploiting Lustre File
Joining for Effective Collective I/O In the Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the Grid (CCGrid
'07), (2007).

