
 

 

Interval Based I/O: A New Approach to Providing 
High Performance Parallel I/O 

 
 

Jeremy Logan 
National Center for Computational 

Sciences 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee, USA 
loganjs@ornl.gov 

 
 

 
 
 

Phillip Dickens  
Department of Computer Science 

University of Maine 
Orono, Maine, USA 

dickens@umcs.maine.edu 
 
 
 

Abstract 

Providing scalable, high-performance parallel I/O 
for data-intensive computations is beset by a number of 
difficult challenges. The most often cited difficulties 
include the non-contiguous I/O patterns prominent in 
scientific codes, the lack of support for parallel I/O 
optimizations in POSIX, the high cost of providing 
strict file consistency semantics, and the cost of 
accessing storage devices over a network. We believe, 
however, that a more fundamental problem is the 
legacy view of a file as a linear sequence of bytes. To 
address this issue, we are developing a new approach 
to parallel I/O that is based on what we term intervals 
and interval files. This paper provides an overview of 
the interval-IO system and a set of benchmarks 
demonstrating the power of this new approach. 

1. Introduction 

Large-scale computing clusters, with thousands to 
tens-of-thousands of computing cores, are becoming an 
increasingly important component of the national 
computational infrastructure [1]. These large-scale 
computing clusters are coupled with state of the art 
parallel file systems such as Lustre [2], PVFS [3], and 
Panasas [4], which offer massive storage capabilities 
and are designed to provide scalable access to 
thousands of clients concurrently. Software systems, 
such as MPI (Message Passing Interface) [5], support 
large-scale applications executing in such extreme 
environments by providing sophisticated mechanisms 
for message passing and process management. MPI-IO 
is the I/O component of the MPI standard, which 
provides to MPI applications a rich API that can be 
used to express complex I/O access patterns, and which 
provides to the underlying implementation many 
opportunities for important I/O optimizations. 

Taken together, these technologies have enabled an 
important new class of scientific applications termed 
data-intensive applications, which can manipulate data 
sets on the order of terabytes to petabytes and beyond. 
Such applications are capable of executing very high-
resolution scientific models, completing computations 
that would once have been deemed intractable. This has 
significantly deepened our understanding of previously 
unexplored scientific phenomena, including, for 
example, climate modeling [7], earthquake modeling 
[6], and genomic pattern matching [8]. It has also made 
possible detailed animation and visualization of 
scientific data [9], further deepening our understanding 
of natural phenomena. 

All of these large-scale scientific applications can 
manipulate massive data sets, ranging from gigabytes to 
terabytes and beyond, and are supported by state-of-
the-art parallel file systems (e.g., Lustre [2], Panasas 
[4], GPFS [10], and PVFS2 [3]), which are designed to 
scale with increasing processor counts and data 
requirements. MPI-IO [5], the I/O specification of the 
MPI standard, further supports such data requirements 
by providing a powerful parallel I/O API, and high-
performance implementations of the standard, which 
can interact with the file system to optimize access to 
the underlying storage.  

The problem, however, is that even with all of this 
hardware and software support, the I/O requirements of 
data-intensive applications are still straining the 
capacity of even the largest, most powerful file systems 
available today, and are becoming a significant drag on 
application performance. This problem will only 
become worse as the number of processors required for 
application execution, and the size of the data sets such 
applications require, continue to increase. This is a 
critical problem on a national scale because continued 
scientific breakthroughs are, in many cases, dependent 
upon the ability to execute higher resolution scientific 



 

 

models, which, in turn, requires data sets of increasing 
size.  
   There are many factors that make this problem, often 
referred to as the scalable I/O problem, so challenging. 
The most often cited issues include the I/O access 
patterns exhibited by scientific applications (e.g., non- 
contiguous I/O [11-13]), poor file system support for 
parallel I/O optimizations, the high cost of enforcing 
strict file consistency semantics [14], and the latency of 
accessing I/O devices across a network. However, we 
believe that a more fundamental problem, whose 
solution would help alleviate all of these challenges, is 
the legacy view of a file as a linear sequence of bytes. 
The problem is that application processes rarely access 
data in a way that matches this file data model, and a 
large component of the scalability problem is the cost 
of dynamically translating between the process data 
model and the file data model at runtime.  In fact, the 
data model used by applications is more accurately 
defined as an interval model, where each process 
maintains a set of perhaps unrelated intervals. We 
believe that aligning these two different data models 
will significantly enhance the performance of parallel 
I/O for data-intensive scientific applications.  
   Over the past three years, we have been addressing 
the scalable I/O problem through the development of a 
new file model, termed interval-files, which are much 
more closely aligned with the application’s access 
patterns than the traditional linear files. We have been 
developing the software infrastructure required to 
support this new I/O model, and have integrated it into 
the ROMIO implementation of the MPI-IO standard 
[17]. The goal of this research is to merge the power 
and flexibility of the MPI-IO parallel I/O interface with 
a more powerful interval-based file model. The system 
that supports this new file model for parallel I/O is 
termed the Interval-IO system.  
   Intervals are based on MPI file views, or, more 
precisely, the intersections of such views. Individual 
file views declare the file regions within which a given 
process will operate. The intersections of all processes’ 
views, which is what we refer to as intervals, identify 
all file regions within which conflicting accesses are 
possible, and, by extension, those regions within which 
there can be no conflicts (termed shared-intervals and 
private-intervals respectively).  This is valuable 
information, and can be utilized by the runtime system 
to increase the concurrency of file accesses and to 
reduce the cost of enforcing strict file consistency 
semantics and maintaining global cache coherence.  
  This paper updates and extends our earlier work 
presented in [26] and [38], which provided an overview 
of the Interval-IO system and preliminary experimental 
results showing the promise of this approach. Since the 
time of these publications, we have completed the 

implementation of the final two components of the 
system that were previously unavailable: the distributed 
locking system, which is required to support MPI-IO 
file consistency semantics (including Atomic Mode), 
and an interval translation tool, which is required to 
convert between different interval sets. 
   One important capability made possible through the 
addition of these two new Interval-IO components is 
what we term collaborative I/O between two 
applications. One example is a tile reader/writer, in 
which a pair of cooperating applications collaborates to 
visualize scientific data. In this case, there are two 
applications; one is a simulation that produces data to 
be displayed, and another that consumes the data, 
producing a visualization on a high-resolution display 
wall. Often it is the case that they are comprised of 
different numbers of processes reading from and 
writing to the same file. The applications may use 
different access patterns. For example, the reader may 
require additional "ghost cells" to manage potential 
overlap between the adjacent display devices. In such 
cases, the producer of the data writes to the file with 
respect to one interval set, and the consumer reads from 
the same file according to a different interval set.  
   Another important problem that the Interval I/O 
system addresses is the issue of producing checkpoint 
files in long-running scientific applications. This is a 
critical issue for our national laboratories and other 
High Performance Computing Centers, where large-
scale parallel simulations can take weeks or months to 
complete their execution [27]. The problem is that the 
meantime to failure for large-scale computing systems 
is not measured in months, but rather in terms of hours 
or days. Thus long-running applications must 
frequently checkpoint their current state in order to be 
restarted in event of a failure. As noted by Bent et al. 
[27], the writing of large checkpoint files by long-
running applications is placing significant stress on the 
parallel file systems. The magnitude of this problem 
will only increase as the size of the simulations, their 
execution time, and the supercomputing systems upon 
which they execute all continue to increase.   
   In this paper, we discuss the Interval-IO system and 
provide experimental results demonstrating its ability to 
address both of these important challenges. The rest of 
this paper is organized as follows. In Section 2, we 
provide background information relevant to the Interval 
I/O system. In Section 3, we provide an overview of the 
basic components of the system. In Section 4, we 
discuss the creation of interval sets. In Section 5, we 
provide our experimental results. We discuss related 
work in Section 6, and provide our conclusions in 
Section 7.  
  
 



 

 

2.  Background 

2.1 MPI-IO 

MPI-IO is the IO component of the MPI standard [5] 
that was designed to provide MPI applications with 
portable, high performance parallel I/O. It provides a 
rich and flexible API that provides to an application the 
ability to express complex parallel I/O access patterns 
in a single I/O request, and provides to the underlying 
implementation important opportunities to optimize 
access to the underlying file system. It is generally 
agreed that the most widely used implementation of the 
MPI-IO standard is ROMIO [17], [18], which was 
developed at Argonne National Laboratory and is 
included in the MPICH2 [19] distribution of the MPI 
standard. ROMIO provides key optimizations for 
enhanced performance (e.g., two-phase I/O [20] and 
data sieving [21]), and is implemented on a wide range 
of parallel architectures and file systems. The 
portability of ROMIO stems from an internal layer 
termed ADIO [17] (an Abstract Device Interface for 
parallel I/O) upon which ROMIO implements the MPI-
IO interface. ADIO implements the file system 
dependent features, and is thus implemented separately 
for each file system. 

2.2   MPI File Views 

An important feature of MPI-IO is the file view [22], 
which maps the relationship between the regions of a 
file that a process will access and the way those regions 
are laid out on disk. A process cannot “see” or access 
any file regions that are not in its file view, and the file 
view thus essentially maps a contiguous window onto 
the (perhaps) non-contiguous file regions in which the 
process will operate. If its data is stored on disk as it is 
defined in the file view, only a single I/O operation is 
required to move the data to and from the disk. 
However, if the data is stored non-contiguously on disk, 
multiple I/O operations are required. 

Figure 1 depicts a file region in which two processes 
are operating, and the data for each is laid out non-
contiguously on disk. The file view for Process P0 is 
shown, which creates a contiguous “view window” of 
the four data blocks it will access. Thus, the data model 
that P0 is using is a contiguous file region, which 
conflicts with the file data model.  

Such non-contiguous file I/O patterns can be 
difficult to implement in a scalable fashion, and several 
techniques have been developed to address this issue 
(e.g., two-phase I/O [20], List I/O [35], DataType I/O 
[36]). The Interval-IO system, however, takes a 
different approach, which is to store the data on disk as 
it is defined in the file view. Thus each process is able 
to read/write its data in a single I/O operation 

 

 
          Figure 1. Example of a file view. 
 
MPI file views play a central role in the Interval I/O 
system. They provide information about the file access 
patterns of individual processes, and, when aggregated, 
show exactly those file regions for which contention is 
possible (overlapping file views), and, by extension, 
those file regions in which conflicting accesses are not 
possible. The technique for aggregating file views is 
discussed in Section 4.  

3.   Interval I/O System  

In this section, we provide a brief overview of the 
Interval I/O system is presented. The interval I/O 
system consists of five primary components: the 
interval integration interface, the interval cache, a 
distributed lock management system, an interval-based 
file layer, and an interval set translation tool.  

 
3.1 The Interval Integration Interface 
 

The interval integration interface (I3) adapts MPI-IO 
calls into corresponding interval set accesses that are 
supported by the underlying interval-based components 
(cache, lock manager). Specifically, the I3 utilizes file 
views set by the application to create interval sets 
designed to efficiently handle the application's I/O 
operations. It also converts file read and write 
operations into corresponding interval accesses based 
on the current interval set.  
 
3.2 Interval Cache 

 
The interval cache is a collaborative software cache 

implemented as an extension to ROMIO. The cache is 
designed to manage contents of the file in memory, 
distributed across the participating processes. The cache 
uses collaboration between application processes to 
handle MPI-IO file accesses. 

Although other research has shown the potential 
effectiveness of a parallel software cache [23-25], this 
earlier work has focused on the use of block-based 
caches. In contrast, our system abandons the traditional 
block-based paradigm, a remnant of physical disk 
caching, in favor of an interval-based approach. The 



 

 

interval cache not only provides improved performance 
by itself, but it also acts as an extremely fast interface 
to the more powerful interval-based files described 
below. 
 
3.3 Distributed Locking System  

 
We have developed a novel locking system designed to 
provide sequential consistency to atomic operations 
performed by the interval cache. The system is 
designed to operate as a distributed system of lock 
managers, each of which acts as a central manager for a 
specific subset of the available locks. The locks are 
assigned to the application processors according to the 
active file view (and the corresponding interval set) so 
that typical access patterns will require each process to 
interact with a relatively small number of lock 
managers. Our flexible design allows the number of 
lock managers to be determined dynamically according 
to the I/O pattern of the application, thus providing a 
mechanism to balance speed and scalability. 

 
3.4 Interval Files 
 
A central motivation for this research is the observation 
that the traditional sequential file is often not a good 
match for a parallel I/O environment. Therefore, a 
major component of this research is to provide a 
suitable alternative file model that eliminates the 
parallel I/O performance issues inherent in sequential 
files. Thus we introduce a virtual interval-based file 
layer designed to integrate seamlessly with the caching 
system and to provide more optimal I/O performance. 
The key to the design is the use of a structured, 
interval-based file format used to represent a given flat 
file by reorganizing file data to better fit the actual 
access pattern used by a parallel application. The 
organization of the interval files corresponds directly to 
the arrangement of cached data, with intervals from 
each process stored contiguously on disk. This allows 
the file accesses to be accomplished via large 
contiguous data transfers with no contention. Metadata 
included in the interval file allows the original flat file 
layout to be reconstructed when necessary. The interval 
files themselves are stored as flat files in an underlying 
file system, allowing their use regardless of the actual 
file system available on a particular cluster. It is 
important to note that a single Interval-based file is 
created and shared by all of the application processes. 
    A preliminary design of the Interval-based file 
format was presented in [26], although no performance 
data was available at that time. Recently, we have 
redesigned the Interval-based file format and completed 
its implementation. The primary difference between the 
two versions has to do with the placement of the data 

and meta-data within the file. In the previous version, 
all of the interval meta-data, interval data, and process 
meta-data were stored contiguously in the file on a 
process-by-process basis (i.e., all such information for 
Process P0 was stored contiguously in the file, followed 
by all such information for Process P1, and so forth). In 
the new design, all process meta-data is stored in the 
file, followed by all interval meta-data, followed by all 
interval data. The advantage of this approach is that all 
of the metadata can be read in a single I/O operation 
rather than one read for each process that wrote the file. 
This is particularly important if the file is read by a 
small number of processes relative to the number of 
writers.  

 
3.5 Interval Translation Tool 

 
Although the interval files provide excellent I/O 
performance, the files are tuned specifically to a 
particular file view of an application running on a 
particular number of processors. To achieve more 
general interoperability of the interval files, the final 
component of the Interval I/O system, called the 
translator, is designed to perform the migration of data 
from one interval layout to another. Efficient translation 
is accomplished by the use of an interval tree that is 
used to remap the intervals between source and target 
layouts. The translator allows a great deal of flexibility 
in its use; it is designed to read from or write to files, or 
stream data to or from an interval cache. In addition, 
the translator can be run on a separate set of processors 
(or cores) from the application performing I/O, 
effectively pipelining the I/O and increasing the 
utilization of the available hardware. 
    A detailed discussion of the design of the interval 
translation tool can be found in [38]. Since the time of 
that publication, we have implemented a prototype 
version of the tool, and, in Section 5.2.3, provide 
experimental results showing that the utilization of 
interval trees does, in fact, lead to highly efficient 
translations.  
 
4. Interval Creation 
 
Having provided an overview of the basic system, we 
now turn to a discussion of how intervals are created. 

Think of a file as an integer line that extends from 0 
to n – 1, where n is the number of bytes in the file. 
Given this representation of a file, a file view can be 
thought of as a set of intervals on this integer line, 
where each interval represents the endpoints of a file 
region in which the owning process will operate. These 
endpoints are obtained from the file views, and divide 
the integer line into a set of partitions termed 
elementary intervals [26]. Each file view can contain 



 

 

multiple intervals, and as more intervals are placed on 
the integer line, more elementary intervals are created. 
Once all of the intervals (of all file views) have been 
added to the line, each of the resulting elementary 
intervals corresponds to an object. 

Figure 2 depicts object creation using this technique. 
Figure 2.A shows three processes, their file views, and 
an integer line representing a 125-byte file. Figure 2.B 
shows the elementary intervals that are created when 
the endpoints of process P0, which represent the two 
file regions in which it will be active, are added to the 
integer line. In particular, it creates four elementary 
intervals: {0, 24}, {25, 49}, {50, 74} and {75, 125}. 
Figure 2.C shows the eight elementary intervals that are 
created when the three file views are all aggregated 
onto the integer line. It is these elementary intervals 
that are utilized by the Interval-IO system. 
   There are two key observations to be made about the 
resulting set of elementary intervals: First, the 
elementary intervals are non-overlapping. This allows 
for the development of a highly efficient interval search 
tree that can store and retrieve information about 
interval sets at runtime. It also means that any shared 
intervals encompass exactly the regions of the file that 
are shared. This means that there is no false sharing, at 
least with respect to the file views provided by the 
application.  
   The second key observation is that intervals can be 
classified as either private to a process or shared 
between two or more processes. This information can 
significantly increase performance because only shared 
regions require locking. It is also very important 
because the set of applications that can access a given 
shared interval is known at interval creation time. Thus 
each lock manager knows exactly which processes can 
attempt to acquire locks it controls, and the lock 
managers can inform such processes about where such 
locks are maintained. This obviates the need for a 
central lock manager, which can also significantly 
increase the performance of the locking system.  

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

5. 

Performance Studies 
 

We now look at two important benchmarks that 
illustrate the performance benefits that can be 
obtainfrom the Interval-IO system. We first look at the 
FLASH-IO benchmark [16] that directly addresses the 
issue of writing large checkpoint files in long-running, 
data-intensive scientific applications. In a preliminary 
study [26], we showed up to a 40% improvement in 
performance for this benchmark (compared to native 
MPI-IO), which was gained simply through utilization 
of the interval-based caching system (Interval files were 
not fully implemented at that time).  The improvement 
thus came from the fact that all writes were collected in 
the cache requiring only a single write to the file system 
when the checkpoint file was closed. In the experiments 
that follow, we demonstrate an order of magnitude 
speedup that is made possible by utilizing the cache 
and writing the checkpoint file as an Interval file rather 
than a traditional file.  
   We then demonstrate how the Interval-IO system 
supports collaborative I/O utilizing the MPI-Tile-IO 
benchmark [15]. We provided preliminary experimental 
results in [38], which demonstrated that the efficiency 
gained by reading from an Interval file rather than a 
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Figure 2.A. This figure depicts the file views of 
three processes. The rectangles represent the 
file regions in which the processes will be 
active.  
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Figure 2.B. This figure depicts the 
elementary elements that are created when 
the file view of P0 is added to the integer 
line.  
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Figure 2.C. This figure depicts the eight intervals 
that are created when the file views of all three 
processes are added to the integer line. 



 

 

traditional file should outweigh the costs of the Interval 
translation. However, neither the distributed locking 
system or the Interval translation tool was implemented 
at that time, which significantly limited the conclusions 
that could be made from that earlier study. In the 
experimental results that follow, we demonstrate that 
the Interval I/O system is able fully to support such I/O 
collaboration because the interval translation tool is 
capable of efficiently converting file data from one 
interval set into another, and because the distributed 
locking system is able to maintain file consistency 
between the tile writer and tile reader.  
    
5.1 FLASH I/O 
 
The FLASH [28] simulation computes the solution of 
fully-compressible, reactive hydrodynamic equations, 
and was developed to study nuclear flashes on the 
surfaces of neutron stars and white dwarfs. FLASH I/O 
[16] is a parallel I/O benchmark that is based on the I/O 
kernel of the FLASH simulation. The benchmark uses 
identical I/O code as that used in the simulation, thus 
any improvements in the I/O performance of the 
benchmark are expected to translate directly to the 
FLASH simulation. The I/O workload consists of 
writing a checkpoint file and two plot files at each 
checkpoint.  

The principal data stored by FLASH consists of 80 
three-dimensional blocks for each processor involved in 
the simulation. Each block, in turn, consists of 512 
smaller sub-blocks, and the data contained in each sub-
block consists of 24 variables of type double. A 
simplified version of the memory and file arrangements 
used by FLASH is shown in Figure 3. In memory, 
variables for each sub-block are stored together. The 
512 sub-blocks comprising a block are also adjacent. In 
the file, however, the primary arrangement is by 
variable, so all of the variables V0 from every block on 
every process are stored contiguously, followed by all 
of the V1’s, and so forth. Thus each process writes 
approximately 7.5 MB per checkpoint. 

 
 
 
 
 
 

 
 
 
 
Figure 3. A simplified view of FLASH’s data layout 
in memory and in the file. The intervals created for 
the FLASH simulation are represented by the dark 
rectangles. 

Each interval contains all of the variables for a 
particular block on a particular process. Each interval is 
4096 bytes, and the file will contain 1920 intervals for 
each process.  

The FLASH simulation and benchmark are 
implemented in Fortran using the Parallel HDF5 
Library for I/O [29] (Hierarchical Data Format). 
Parallel HDF5 is a high level I/O library that provides a 
structured file format that is portable across multiple 
file systems. While HDF5 utilizes MPI-IO as the 
underlying I/O mechanism, the user does not access 
MPI-IO directly, but rather through a higher-level API 
provided by the library. In order to use the interval-file 
format, we wrote a version of the benchmark in C that 
executes on top of the Interval-IO system. Our version 
of the FLASH I/O benchmark uses exactly the same 
file layout and memory layout as the original version, 
but writes the checkpoint data to disk as interval files.  

The FLASH I/O benchmark has also been used to 
evaluate the performance of the PNetCDF parallel I/O 
library [30]. Similar to Parallel HDF5, PnetCDF 
provides a structured file format that is portable across 
multiple file systems. It also uses MPI-IO as the 
underlying I/O mechanism, which is only accessed by 
the user through a high-level interface provided by the 
library. 

In the experiments that follow, we compare the 
performance of the Interval I/O system with both of 
these important I/O libraries.  
 
5.1.1 Experimental Design 

 
We performed these experiments on the Lonestar 
cluster housed at the Texas Advanced Computing 
Center. At the time these experiments were conducted, 
Lonestar consisted of 1300 Dell PowerEdge 1955 
blades (nodes). Each node contained two Xeon Intel 
Duo-Core 64-bit processors running at 2.66 Ghz and 
had 8 GB of DDR-2 memory. The nodes were 
connected by an InfiniBand interconnect using a fat tree 
topology. Lonestar was attached to a 68 TB Lustre file 
system comprised of 16 Dell 1850 I/O data servers 
(Lustre OSSs).   
   In these experiments, we compared the time required 
to write the FLASH I/O checkpoint files using the three 
different file formats discussed above: Parallel HDF5 
[29], PNetCDF [30], and interval-files using the 
Interval-IO system. We varied the number of 
processors between 16 and 256, with one FLASH I/O 
process per processor. 
 
5.1.2 Experimental Results 
 
The results of these experiments are shown in Figure 4. 
As can be seen, the Interval I/O system performed 



 

 

significantly better than either Parallel HDF5 or 
PNetCDF. In fact, it was able to write the checkpoint 
file approximately nine times faster than PNtCDF, and 
five times faster than Parallel HDF5. Visually, it 
appears as though the write times were linear in the 
number of processors for Parallel HDF5 and PNetCDF, 
and logarithmic in the case of Interval I/O, at least for 
up to 256 processors. Unfortunately, we were unable to 
acquire more than 256 processors on Lonestar to 
observe whether this trend would continue as the 
problem size further increased.  
   There are several reasons why our Interval I/O 
System performs so well with the FLASH-IO 
benchmark. FLASH-IO benefits from caching since a 
number of separate MPI-IO write operations are 
performed, and the results of the writes can be 
combined in the cache, which generates fewer file 
system operations than would be required without 
caching. Furthermore, our approach avoids false 
sharing in the cache by using intervals as the cache unit. 
Another factor is that we are able to eliminate 
noncontiguous file system accesses because the 
intervals written by each process are stored together in 
the interval file. Finally, we avoid all locking overhead 
by detecting that the pattern used by FLASH-IO 
contains only private intervals.  
    These results provide strong support for our 
hypothesis that parallel I/O performance can be 
significantly improved by utilizing the Interval-based 
file format. In hindsight, it would have been very 
informative to look at the performance of the Interval-
IO system when the data was written out using the 
traditional file format in addition to the Interval-based 
file format. This would help provide information as to 
the relative contribution of (a) collecting all writes in 
the cache, and (b), writing the file as an Interval file, to 
overall performance gains. As noted above, the 
experiments provided in [28], where the cache was 
utilized but the data was written out as a traditional file, 
provide some insight into this issue and suggest that 
utilizing the Interval-based file format is the primary 
contributor to increased parallel I/O performance. 
However, more studies are needed to draw definitive 
conclusions. 
 
5.2 Collaborative I/O  
 
The MPI-Tile-IO benchmark [15] models quite well the 
idea of collaborative I/O discussed above. A producer 
application consists of a set of processes that generate a 
dense two-dimensional set of pixel data that is written 
to a shared file (MPI-Tile-Writer), and the consuming 
application consists of a set of processes that read the 
pixel data from the shared file and display the data on a 
tiled wallboard (MPI-Tile-Reader). The tiled wallboard 

consists of a set of individual monitors that together 
display the entire image. Adjacent monitors (in the 
horizontal and vertical directions) share a column of 
pixel data to help blend the individual components of 
the image into a smoother aggregate image. Such 
columns of shared data are often referred to as “guard 
cells”. 
   For clarity of presentation, assume that both 
applications consist of four processes, that the image 
data is displayed on a tiled wallboard with four 
monitors, and that there is a one-to-one mapping 
between the tile reader processes and the monitors on 
the display wall. This is shown in Figure 5. The dashed 
lines in the figure represent the pixel data that is shared 
between processes P0 and P1. While we do not show the 
interval sets that would be created for the application 
processes, we note that all of the intervals associated 
with the writer processes are private. The interval sets 
associated with the reader processes, however, contain 
both private and shared intervals.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. This graph shows the time required to 
produce checkpoint files as a function of the number 
of processors and the data file format.  
 
 
 
 
 
 
 
 
 
 
Figure 5. The figure shows four display devices, and 
the pixel data that is shared between processes P0 
and P1. 
 
These file access patterns are quite challenging for 
current parallel I/O implementations. There are three 



 

 

reasons for such difficulties. First, there are a large 
number of noncontiguous file accesses, each of which 
requires a separate I/O operation. Second, the file 
regions written by producer processes overlap with the 
file regions written by other producer processes. This 
can lead to the serialization of file accesses due to false 
sharing. Third, complex locking is required to access 
the guard cells.  
   Utilizing the Interval-IO system to implement the 
producer and consumer applications is also 
problematic. It is expected that the I/O performed by 
the writer processes would be efficient because they 
would write their data to the file in the same way it is 
stored in their caches. Thus each process could write all 
of its data to disk in a single I/O operation.  
   The issue is more complex in the case of the 
consumer processes, however, because the data is not 
stored on disk according to their interval sets. In fact, 
the consumer processes would be unable to access the 
data at all because the file metadata describes the 
interval sets of the producer processes. Thus in order to 
utilize the Interval-IO system an additional translation 
step is required that converts the producer’s interval set 
into one that can be efficiently read (and understood) by 
the consumers.  The question, then, is whether the 
benefits of using interval-IO outweigh the costs of 
performing the translation. We conducted two sets of 
experiments to gain insight into this issue.  
 
5.2.1 Experimental Design 

 
The first set of experiments was designed to get a 
handle on the possible benefits that could be obtained 
by using interval files with the MPI-Tile-IO 
benchmark. We utilized the Interval-IO system for the 
tile writer application, and handcrafted a second 
interval file that matched the interval set of the tile 
reader. We then studied their performance separately, 
and compared the results to those obtained using 
unmodified ROMIO. If there were not a significant 
difference in performance without the overhead of the 
translation tool, then it would stand to reason that the 
Interval-IO system would not be effective in supporting 
cooperative I/O.  
   We performed these experiments on the Ranger 
cluster at the Texas Advanced Computing Center. At 
the time of these experiments, Ranger consisted of 
3936 SunBlade x6420 blade nodes, each of which 
contained four quad-core AMD Opteron processors for 
a total of 62,976 cores. Each blade was running a 
2.6.18.8 x86-64 Linux kernel from kernel.org. Ranger 
was attached to a 1.73 petabyte Lustre file system 
comprised of 72 Sun x4500 disk servers, each 
containing 48 SATA drives.  

   We varied the size of the display wall between a 3x3 
and an 8x8 array of monitors. We also maintained a 
one-to-one mapping between the number of monitors 
and the number of readers and writers.  
 
5.2.2 Experimental Results 
 
The results of these experiments are shown in Figure 6. 
As can be seen, the read time was reduced by as much 
as 35% (in the 8x8 configuration) when compared to 
ROMIO. More significantly, however, the write time 
was reduced by as much as 90% in the 7x7 
configuration. It should be noted that ROMIO was 
unable to complete write operations for the 8x8 
configuration within the 1-hour allotted run time.  

As noted above, the reasons for the relatively poor 
performance of ROMIO with respect to the tile writer 
include a large number of noncontiguous I/O operations 
and the serialization of write operations due to false 
sharing. In the case of the Interval I/O system, all of the 
writing was performed without acquiring locks since 
the system detected that none of the intervals were 
shared. Also, all of the noncontiguous writes were 
collected in the cache and only a single I/O operation 
was required to write the data to disk. 
 
5.2.3 Translation Time 

 
The second set of experiments investigated the costs 
associated with performing the translation between the 
interval sets of the tile writer processes and those of the 
tile reader processes. While the basic functionality of 
the translator tool has been implemented, it had not 
been integrated into the Interval I/O system at the time 
of this writing. We thus executed the translator as a 
stand-alone application, and recorded the time required 
to perform the interval set translation for the same 
configurations used in the first experiments. The results 
are shown in Figure 7.  
    
 
 
 
 
 
 
 
 
 
 
Figure 6. This graph shows the time taken to 
perform the I/O operations for the tile reader and 
writer as a function of the parallel I/O system and 
system configuration.  
 



 

 

As can be seen, the amount of time required to perform 
the translations was quite reasonable, and was more 
than offset by the significant performance increases 
obtained through the utilization of interval files. We 
conclude that the Interval I/O system is a promising 
approach to supporting collaborative I/O. 

  
 
Figure 7. This graph shows the costs of performing 
the translation between interval sets as a function of 
the system configuration.  
 
6. Related Work 

 
The DAChe project [24] is also exploring the use of a 
caching system to improve the performance of parallel 
I/O. The DAChe system is a block-based, client-side 
cache designed to use remote memory access (RMA) to 
perform cache management across cluster nodes. The 
primary difference between DAChe and the interval-
based cache developed in this research is that DAChe 
caches fixed size blocks while our system caches 
intervals. Because DAChe cannot distinguish between 
shared and private data, it must provide mutual 
exclusion for every data block access, while only 
shared intervals require locking in our system. Utilizing 
intervals as the basic unit of caching can also 
significantly reduce false sharing. Both systems can 
provide increased write performance by collecting 
writes in the cache. 

View I/O [32] provides another approach to 
increasing parallel I/O performance based on file views. 
Like Interval I/O, View I/O makes use of MPI-IO file 
views to optimize transfers between the application and 
the file system. It combines smaller, noncontiguous 
accesses into large chunks, and uses associated 
metadata to allow the data to be later reorganized into 
linear file order.  

One primary difference between View I/O and 
Interval I/O is that View I/O requires support from the 
underlying file system to reorganize file data while 
Interval I/O is implemented at the application layer and 
requires no file system support. While View I/O 
reorganizes data at the I/O disks, we store the data in 

the same format as it appears in the cache, along with 
additional metadata that allows the data to be 
reorganized (if necessary) when the file is read. 

Sehrish, Wang, and Thakur [35] developed a 
conflict detection algorithm to minimize the locking 
overhead when an application is executing in Atomic 
Mode. This is essentially equivalent to detecting shared 
and private intervals in the Interval I/O system, 
although the techniques for doing so are different. 
However, their system does not provide an efficient 
distributed locking system in the case of shared regions, 
and does not provide the significant performance 
enhancements that come with using interval files. 

Other techniques have been developed specifically 
to address the issue of noncontiguous file accesses, 
including List I/O [35] and Data Type I/O [36]. While 
these techniques can reduce the number of file system 
accesses that result from noncontiguous I/O patterns, 
they fail to provide a conflict detection mechanism to 
reduce the overhead of locking. Also, the Interval I/O 
system largely obviates the need for such approaches 
since the intervals belonging to a process are stored 
contiguously on disk. 

The Adaptable IO System (ADIOS) project [33] is 
also addressing the IO performance limitations of HPC 
systems. ADIOS exposes a high level API that supports 
structured, self-describing data. It provides a variety of 
different IO methods, which are selectable via an XML-
based IO configuration file. Similar to our use of 
interval files, ADIOS relies on an internal file format 
called BP to achieve best performance.  

A software cache, which is a significant component 
of the Interval-IO system, is absent from ADIOS. 
However, ADIOS does support several staging methods 
(e.g., DataStager [39] and DataSpaces [40]), which 
provide in memory data to the application as an 
external component. Interval-IO differs from ADIOS 
most significantly in its support of the MPI-IO 
interface, which, as noted above, is one of the key goals 
of this research. This requires the Interval-IO system to 
support random access and the MPI-IO file consistency 
semantics. 

The Parallel Log-structured File System (PLFS, 
[27]) is a virtual FUSE file system designed specifically 
to optimize the writing of application checkpoint data. 
It is a “virtual interposition layer” that sits between the 
parallel application and the underlying parallel file 
system. PLFS takes application data that the processes 
are writing to a shared file, and rearranges it such that 
each process is actually writing to its own independent 
file.  

The goal of rearranging application data to increase 
parallel I/O performance is common to PLFS and the 
Interval-IO system. As with ADIOS, however, one of 
the major differences in the two systems is that 



 

 

Interval-IO is implemented within MPI-IO itself and 
fully supports the MPI-IO interface. This includes 
support for MPI-IO file consistency semantics, which 
could be, but is not currently, implemented within 
PLFS.  Also, the Interval-IO system can support 
functionality such as I/O cooperation between 
applications that is not a concern of PLFS. Finally, 
Interval-IO creates a single shared file rather than one 
file per process as is done in PLFS.  

 
7. Conclusions 
 
In this paper, we have introduced the Interval I/O 
system and provided experimental results showing the 
effectiveness of this new approach. The primary 
remaining task is to integrate the translation tool into 
the Interval I/O system. Once this is accomplished, we 
plan to investigate more fully the concept of 
cooperative I/O. 
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