

Interval Based I/O: A New Approach to Providing
High Performance Parallel I/O

Jeremy Logan
National Center for Computational

Sciences
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
loganjs@ornl.gov

Phillip Dickens
Department of Computer Science

University of Maine
Orono, Maine, USA

dickens@umcs.maine.edu

Abstract

Providing scalable, high-performance parallel I/O
for data-intensive computations is beset by a number of
difficult challenges. The most often cited difficulties
include the non-contiguous I/O patterns prominent in
scientific codes, the lack of support for parallel I/O
optimizations in POSIX, the high cost of providing
strict file consistency semantics, and the cost of
accessing storage devices over a network. We believe,
however, that a more fundamental problem is the
legacy view of a file as a linear sequence of bytes. To
address this issue, we are developing a new approach
to parallel I/O that is based on what we term intervals
and interval files. This paper provides an overview of
the interval-IO system and a set of benchmarks
demonstrating the power of this new approach.

1. Introduction

Large-scale computing clusters, with thousands to
tens-of-thousands of computing cores, are becoming an
increasingly important component of the national
computational infrastructure [1]. These large-scale
computing clusters are coupled with state of the art
parallel file systems such as Lustre [2], PVFS [3], and
Panasas [4], which offer massive storage capabilities
and are designed to provide scalable access to
thousands of clients concurrently. Software systems,
such as MPI (Message Passing Interface) [5], support
large-scale applications executing in such extreme
environments by providing sophisticated mechanisms
for message passing and process management. MPI-IO
is the I/O component of the MPI standard, which
provides to MPI applications a rich API that can be
used to express complex I/O access patterns, and which
provides to the underlying implementation many
opportunities for important I/O optimizations.

Taken together, these technologies have enabled an
important new class of scientific applications termed
data-intensive applications, which can manipulate data
sets on the order of terabytes to petabytes and beyond.
Such applications are capable of executing very high-
resolution scientific models, completing computations
that would once have been deemed intractable. This has
significantly deepened our understanding of previously
unexplored scientific phenomena, including, for
example, climate modeling [7], earthquake modeling
[6], and genomic pattern matching [8]. It has also made
possible detailed animation and visualization of
scientific data [9], further deepening our understanding
of natural phenomena.

All of these large-scale scientific applications can
manipulate massive data sets, ranging from gigabytes to
terabytes and beyond, and are supported by state-of-
the-art parallel file systems (e.g., Lustre [2], Panasas
[4], GPFS [10], and PVFS2 [3]), which are designed to
scale with increasing processor counts and data
requirements. MPI-IO [5], the I/O specification of the
MPI standard, further supports such data requirements
by providing a powerful parallel I/O API, and high-
performance implementations of the standard, which
can interact with the file system to optimize access to
the underlying storage.

The problem, however, is that even with all of this
hardware and software support, the I/O requirements of
data-intensive applications are still straining the
capacity of even the largest, most powerful file systems
available today, and are becoming a significant drag on
application performance. This problem will only
become worse as the number of processors required for
application execution, and the size of the data sets such
applications require, continue to increase. This is a
critical problem on a national scale because continued
scientific breakthroughs are, in many cases, dependent
upon the ability to execute higher resolution scientific

models, which, in turn, requires data sets of increasing
size.
 There are many factors that make this problem, often
referred to as the scalable I/O problem, so challenging.
The most often cited issues include the I/O access
patterns exhibited by scientific applications (e.g., non-
contiguous I/O [11-13]), poor file system support for
parallel I/O optimizations, the high cost of enforcing
strict file consistency semantics [14], and the latency of
accessing I/O devices across a network. However, we
believe that a more fundamental problem, whose
solution would help alleviate all of these challenges, is
the legacy view of a file as a linear sequence of bytes.
The problem is that application processes rarely access
data in a way that matches this file data model, and a
large component of the scalability problem is the cost
of dynamically translating between the process data
model and the file data model at runtime. In fact, the
data model used by applications is more accurately
defined as an interval model, where each process
maintains a set of perhaps unrelated intervals. We
believe that aligning these two different data models
will significantly enhance the performance of parallel
I/O for data-intensive scientific applications.
 Over the past three years, we have been addressing
the scalable I/O problem through the development of a
new file model, termed interval-files, which are much
more closely aligned with the application’s access
patterns than the traditional linear files. We have been
developing the software infrastructure required to
support this new I/O model, and have integrated it into
the ROMIO implementation of the MPI-IO standard
[17]. The goal of this research is to merge the power
and flexibility of the MPI-IO parallel I/O interface with
a more powerful interval-based file model. The system
that supports this new file model for parallel I/O is
termed the Interval-IO system.
 Intervals are based on MPI file views, or, more
precisely, the intersections of such views. Individual
file views declare the file regions within which a given
process will operate. The intersections of all processes’
views, which is what we refer to as intervals, identify
all file regions within which conflicting accesses are
possible, and, by extension, those regions within which
there can be no conflicts (termed shared-intervals and
private-intervals respectively). This is valuable
information, and can be utilized by the runtime system
to increase the concurrency of file accesses and to
reduce the cost of enforcing strict file consistency
semantics and maintaining global cache coherence.
 This paper updates and extends our earlier work
presented in [26] and [38], which provided an overview
of the Interval-IO system and preliminary experimental
results showing the promise of this approach. Since the
time of these publications, we have completed the

implementation of the final two components of the
system that were previously unavailable: the distributed
locking system, which is required to support MPI-IO
file consistency semantics (including Atomic Mode),
and an interval translation tool, which is required to
convert between different interval sets.
 One important capability made possible through the
addition of these two new Interval-IO components is
what we term collaborative I/O between two
applications. One example is a tile reader/writer, in
which a pair of cooperating applications collaborates to
visualize scientific data. In this case, there are two
applications; one is a simulation that produces data to
be displayed, and another that consumes the data,
producing a visualization on a high-resolution display
wall. Often it is the case that they are comprised of
different numbers of processes reading from and
writing to the same file. The applications may use
different access patterns. For example, the reader may
require additional "ghost cells" to manage potential
overlap between the adjacent display devices. In such
cases, the producer of the data writes to the file with
respect to one interval set, and the consumer reads from
the same file according to a different interval set.
 Another important problem that the Interval I/O
system addresses is the issue of producing checkpoint
files in long-running scientific applications. This is a
critical issue for our national laboratories and other
High Performance Computing Centers, where large-
scale parallel simulations can take weeks or months to
complete their execution [27]. The problem is that the
meantime to failure for large-scale computing systems
is not measured in months, but rather in terms of hours
or days. Thus long-running applications must
frequently checkpoint their current state in order to be
restarted in event of a failure. As noted by Bent et al.
[27], the writing of large checkpoint files by long-
running applications is placing significant stress on the
parallel file systems. The magnitude of this problem
will only increase as the size of the simulations, their
execution time, and the supercomputing systems upon
which they execute all continue to increase.
 In this paper, we discuss the Interval-IO system and
provide experimental results demonstrating its ability to
address both of these important challenges. The rest of
this paper is organized as follows. In Section 2, we
provide background information relevant to the Interval
I/O system. In Section 3, we provide an overview of the
basic components of the system. In Section 4, we
discuss the creation of interval sets. In Section 5, we
provide our experimental results. We discuss related
work in Section 6, and provide our conclusions in
Section 7.

2. Background

2.1 MPI-IO

MPI-IO is the IO component of the MPI standard [5]
that was designed to provide MPI applications with
portable, high performance parallel I/O. It provides a
rich and flexible API that provides to an application the
ability to express complex parallel I/O access patterns
in a single I/O request, and provides to the underlying
implementation important opportunities to optimize
access to the underlying file system. It is generally
agreed that the most widely used implementation of the
MPI-IO standard is ROMIO [17], [18], which was
developed at Argonne National Laboratory and is
included in the MPICH2 [19] distribution of the MPI
standard. ROMIO provides key optimizations for
enhanced performance (e.g., two-phase I/O [20] and
data sieving [21]), and is implemented on a wide range
of parallel architectures and file systems. The
portability of ROMIO stems from an internal layer
termed ADIO [17] (an Abstract Device Interface for
parallel I/O) upon which ROMIO implements the MPI-
IO interface. ADIO implements the file system
dependent features, and is thus implemented separately
for each file system.

2.2 MPI File Views

An important feature of MPI-IO is the file view [22],
which maps the relationship between the regions of a
file that a process will access and the way those regions
are laid out on disk. A process cannot “see” or access
any file regions that are not in its file view, and the file
view thus essentially maps a contiguous window onto
the (perhaps) non-contiguous file regions in which the
process will operate. If its data is stored on disk as it is
defined in the file view, only a single I/O operation is
required to move the data to and from the disk.
However, if the data is stored non-contiguously on disk,
multiple I/O operations are required.

Figure 1 depicts a file region in which two processes
are operating, and the data for each is laid out non-
contiguously on disk. The file view for Process P0 is
shown, which creates a contiguous “view window” of
the four data blocks it will access. Thus, the data model
that P0 is using is a contiguous file region, which
conflicts with the file data model.

Such non-contiguous file I/O patterns can be
difficult to implement in a scalable fashion, and several
techniques have been developed to address this issue
(e.g., two-phase I/O [20], List I/O [35], DataType I/O
[36]). The Interval-IO system, however, takes a
different approach, which is to store the data on disk as
it is defined in the file view. Thus each process is able
to read/write its data in a single I/O operation

 Figure 1. Example of a file view.

MPI file views play a central role in the Interval I/O
system. They provide information about the file access
patterns of individual processes, and, when aggregated,
show exactly those file regions for which contention is
possible (overlapping file views), and, by extension,
those file regions in which conflicting accesses are not
possible. The technique for aggregating file views is
discussed in Section 4.

3. Interval I/O System

In this section, we provide a brief overview of the
Interval I/O system is presented. The interval I/O
system consists of five primary components: the
interval integration interface, the interval cache, a
distributed lock management system, an interval-based
file layer, and an interval set translation tool.

3.1 The Interval Integration Interface

The interval integration interface (I3) adapts MPI-IO
calls into corresponding interval set accesses that are
supported by the underlying interval-based components
(cache, lock manager). Specifically, the I3 utilizes file
views set by the application to create interval sets
designed to efficiently handle the application's I/O
operations. It also converts file read and write
operations into corresponding interval accesses based
on the current interval set.

3.2 Interval Cache

The interval cache is a collaborative software cache

implemented as an extension to ROMIO. The cache is
designed to manage contents of the file in memory,
distributed across the participating processes. The cache
uses collaboration between application processes to
handle MPI-IO file accesses.

Although other research has shown the potential
effectiveness of a parallel software cache [23-25], this
earlier work has focused on the use of block-based
caches. In contrast, our system abandons the traditional
block-based paradigm, a remnant of physical disk
caching, in favor of an interval-based approach. The

interval cache not only provides improved performance
by itself, but it also acts as an extremely fast interface
to the more powerful interval-based files described
below.

3.3 Distributed Locking System

We have developed a novel locking system designed to
provide sequential consistency to atomic operations
performed by the interval cache. The system is
designed to operate as a distributed system of lock
managers, each of which acts as a central manager for a
specific subset of the available locks. The locks are
assigned to the application processors according to the
active file view (and the corresponding interval set) so
that typical access patterns will require each process to
interact with a relatively small number of lock
managers. Our flexible design allows the number of
lock managers to be determined dynamically according
to the I/O pattern of the application, thus providing a
mechanism to balance speed and scalability.

3.4 Interval Files

A central motivation for this research is the observation
that the traditional sequential file is often not a good
match for a parallel I/O environment. Therefore, a
major component of this research is to provide a
suitable alternative file model that eliminates the
parallel I/O performance issues inherent in sequential
files. Thus we introduce a virtual interval-based file
layer designed to integrate seamlessly with the caching
system and to provide more optimal I/O performance.
The key to the design is the use of a structured,
interval-based file format used to represent a given flat
file by reorganizing file data to better fit the actual
access pattern used by a parallel application. The
organization of the interval files corresponds directly to
the arrangement of cached data, with intervals from
each process stored contiguously on disk. This allows
the file accesses to be accomplished via large
contiguous data transfers with no contention. Metadata
included in the interval file allows the original flat file
layout to be reconstructed when necessary. The interval
files themselves are stored as flat files in an underlying
file system, allowing their use regardless of the actual
file system available on a particular cluster. It is
important to note that a single Interval-based file is
created and shared by all of the application processes.
 A preliminary design of the Interval-based file
format was presented in [26], although no performance
data was available at that time. Recently, we have
redesigned the Interval-based file format and completed
its implementation. The primary difference between the
two versions has to do with the placement of the data

and meta-data within the file. In the previous version,
all of the interval meta-data, interval data, and process
meta-data were stored contiguously in the file on a
process-by-process basis (i.e., all such information for
Process P0 was stored contiguously in the file, followed
by all such information for Process P1, and so forth). In
the new design, all process meta-data is stored in the
file, followed by all interval meta-data, followed by all
interval data. The advantage of this approach is that all
of the metadata can be read in a single I/O operation
rather than one read for each process that wrote the file.
This is particularly important if the file is read by a
small number of processes relative to the number of
writers.

3.5 Interval Translation Tool

Although the interval files provide excellent I/O
performance, the files are tuned specifically to a
particular file view of an application running on a
particular number of processors. To achieve more
general interoperability of the interval files, the final
component of the Interval I/O system, called the
translator, is designed to perform the migration of data
from one interval layout to another. Efficient translation
is accomplished by the use of an interval tree that is
used to remap the intervals between source and target
layouts. The translator allows a great deal of flexibility
in its use; it is designed to read from or write to files, or
stream data to or from an interval cache. In addition,
the translator can be run on a separate set of processors
(or cores) from the application performing I/O,
effectively pipelining the I/O and increasing the
utilization of the available hardware.
 A detailed discussion of the design of the interval
translation tool can be found in [38]. Since the time of
that publication, we have implemented a prototype
version of the tool, and, in Section 5.2.3, provide
experimental results showing that the utilization of
interval trees does, in fact, lead to highly efficient
translations.

4. Interval Creation

Having provided an overview of the basic system, we
now turn to a discussion of how intervals are created.

Think of a file as an integer line that extends from 0
to n – 1, where n is the number of bytes in the file.
Given this representation of a file, a file view can be
thought of as a set of intervals on this integer line,
where each interval represents the endpoints of a file
region in which the owning process will operate. These
endpoints are obtained from the file views, and divide
the integer line into a set of partitions termed
elementary intervals [26]. Each file view can contain

multiple intervals, and as more intervals are placed on
the integer line, more elementary intervals are created.
Once all of the intervals (of all file views) have been
added to the line, each of the resulting elementary
intervals corresponds to an object.

Figure 2 depicts object creation using this technique.
Figure 2.A shows three processes, their file views, and
an integer line representing a 125-byte file. Figure 2.B
shows the elementary intervals that are created when
the endpoints of process P0, which represent the two
file regions in which it will be active, are added to the
integer line. In particular, it creates four elementary
intervals: {0, 24}, {25, 49}, {50, 74} and {75, 125}.
Figure 2.C shows the eight elementary intervals that are
created when the three file views are all aggregated
onto the integer line. It is these elementary intervals
that are utilized by the Interval-IO system.
 There are two key observations to be made about the
resulting set of elementary intervals: First, the
elementary intervals are non-overlapping. This allows
for the development of a highly efficient interval search
tree that can store and retrieve information about
interval sets at runtime. It also means that any shared
intervals encompass exactly the regions of the file that
are shared. This means that there is no false sharing, at
least with respect to the file views provided by the
application.
 The second key observation is that intervals can be
classified as either private to a process or shared
between two or more processes. This information can
significantly increase performance because only shared
regions require locking. It is also very important
because the set of applications that can access a given
shared interval is known at interval creation time. Thus
each lock manager knows exactly which processes can
attempt to acquire locks it controls, and the lock
managers can inform such processes about where such
locks are maintained. This obviates the need for a
central lock manager, which can also significantly
increase the performance of the locking system.

5.

Performance Studies

We now look at two important benchmarks that
illustrate the performance benefits that can be
obtainfrom the Interval-IO system. We first look at the
FLASH-IO benchmark [16] that directly addresses the
issue of writing large checkpoint files in long-running,
data-intensive scientific applications. In a preliminary
study [26], we showed up to a 40% improvement in
performance for this benchmark (compared to native
MPI-IO), which was gained simply through utilization
of the interval-based caching system (Interval files were
not fully implemented at that time). The improvement
thus came from the fact that all writes were collected in
the cache requiring only a single write to the file system
when the checkpoint file was closed. In the experiments
that follow, we demonstrate an order of magnitude
speedup that is made possible by utilizing the cache
and writing the checkpoint file as an Interval file rather
than a traditional file.
 We then demonstrate how the Interval-IO system
supports collaborative I/O utilizing the MPI-Tile-IO
benchmark [15]. We provided preliminary experimental
results in [38], which demonstrated that the efficiency
gained by reading from an Interval file rather than a

0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 25	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 50	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 75

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 25	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 50	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 90	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 125

 15 40 65 90

Figure 2.A. This figure depicts the file views of
three processes. The rectangles represent the
file regions in which the processes will be
active.

	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 25	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 50	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 75

P
0

	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3

Figure 2.B. This figure depicts the
elementary elements that are created when
the file view of P0 is added to the integer
line.

 0 1 2 3 4 5 6 7
Intervals

0 15 25 40 50 65 75 90 125

Figure 2.C. This figure depicts the eight intervals
that are created when the file views of all three
processes are added to the integer line.

traditional file should outweigh the costs of the Interval
translation. However, neither the distributed locking
system or the Interval translation tool was implemented
at that time, which significantly limited the conclusions
that could be made from that earlier study. In the
experimental results that follow, we demonstrate that
the Interval I/O system is able fully to support such I/O
collaboration because the interval translation tool is
capable of efficiently converting file data from one
interval set into another, and because the distributed
locking system is able to maintain file consistency
between the tile writer and tile reader.

5.1 FLASH I/O

The FLASH [28] simulation computes the solution of
fully-compressible, reactive hydrodynamic equations,
and was developed to study nuclear flashes on the
surfaces of neutron stars and white dwarfs. FLASH I/O
[16] is a parallel I/O benchmark that is based on the I/O
kernel of the FLASH simulation. The benchmark uses
identical I/O code as that used in the simulation, thus
any improvements in the I/O performance of the
benchmark are expected to translate directly to the
FLASH simulation. The I/O workload consists of
writing a checkpoint file and two plot files at each
checkpoint.

The principal data stored by FLASH consists of 80
three-dimensional blocks for each processor involved in
the simulation. Each block, in turn, consists of 512
smaller sub-blocks, and the data contained in each sub-
block consists of 24 variables of type double. A
simplified version of the memory and file arrangements
used by FLASH is shown in Figure 3. In memory,
variables for each sub-block are stored together. The
512 sub-blocks comprising a block are also adjacent. In
the file, however, the primary arrangement is by
variable, so all of the variables V0 from every block on
every process are stored contiguously, followed by all
of the V1’s, and so forth. Thus each process writes
approximately 7.5 MB per checkpoint.

Figure 3. A simplified view of FLASH’s data layout
in memory and in the file. The intervals created for
the FLASH simulation are represented by the dark
rectangles.

Each interval contains all of the variables for a
particular block on a particular process. Each interval is
4096 bytes, and the file will contain 1920 intervals for
each process.

The FLASH simulation and benchmark are
implemented in Fortran using the Parallel HDF5
Library for I/O [29] (Hierarchical Data Format).
Parallel HDF5 is a high level I/O library that provides a
structured file format that is portable across multiple
file systems. While HDF5 utilizes MPI-IO as the
underlying I/O mechanism, the user does not access
MPI-IO directly, but rather through a higher-level API
provided by the library. In order to use the interval-file
format, we wrote a version of the benchmark in C that
executes on top of the Interval-IO system. Our version
of the FLASH I/O benchmark uses exactly the same
file layout and memory layout as the original version,
but writes the checkpoint data to disk as interval files.

The FLASH I/O benchmark has also been used to
evaluate the performance of the PNetCDF parallel I/O
library [30]. Similar to Parallel HDF5, PnetCDF
provides a structured file format that is portable across
multiple file systems. It also uses MPI-IO as the
underlying I/O mechanism, which is only accessed by
the user through a high-level interface provided by the
library.

In the experiments that follow, we compare the
performance of the Interval I/O system with both of
these important I/O libraries.

5.1.1 Experimental Design

We performed these experiments on the Lonestar
cluster housed at the Texas Advanced Computing
Center. At the time these experiments were conducted,
Lonestar consisted of 1300 Dell PowerEdge 1955
blades (nodes). Each node contained two Xeon Intel
Duo-Core 64-bit processors running at 2.66 Ghz and
had 8 GB of DDR-2 memory. The nodes were
connected by an InfiniBand interconnect using a fat tree
topology. Lonestar was attached to a 68 TB Lustre file
system comprised of 16 Dell 1850 I/O data servers
(Lustre OSSs).
 In these experiments, we compared the time required
to write the FLASH I/O checkpoint files using the three
different file formats discussed above: Parallel HDF5
[29], PNetCDF [30], and interval-files using the
Interval-IO system. We varied the number of
processors between 16 and 256, with one FLASH I/O
process per processor.

5.1.2 Experimental Results

The results of these experiments are shown in Figure 4.
As can be seen, the Interval I/O system performed

significantly better than either Parallel HDF5 or
PNetCDF. In fact, it was able to write the checkpoint
file approximately nine times faster than PNtCDF, and
five times faster than Parallel HDF5. Visually, it
appears as though the write times were linear in the
number of processors for Parallel HDF5 and PNetCDF,
and logarithmic in the case of Interval I/O, at least for
up to 256 processors. Unfortunately, we were unable to
acquire more than 256 processors on Lonestar to
observe whether this trend would continue as the
problem size further increased.
 There are several reasons why our Interval I/O
System performs so well with the FLASH-IO
benchmark. FLASH-IO benefits from caching since a
number of separate MPI-IO write operations are
performed, and the results of the writes can be
combined in the cache, which generates fewer file
system operations than would be required without
caching. Furthermore, our approach avoids false
sharing in the cache by using intervals as the cache unit.
Another factor is that we are able to eliminate
noncontiguous file system accesses because the
intervals written by each process are stored together in
the interval file. Finally, we avoid all locking overhead
by detecting that the pattern used by FLASH-IO
contains only private intervals.
 These results provide strong support for our
hypothesis that parallel I/O performance can be
significantly improved by utilizing the Interval-based
file format. In hindsight, it would have been very
informative to look at the performance of the Interval-
IO system when the data was written out using the
traditional file format in addition to the Interval-based
file format. This would help provide information as to
the relative contribution of (a) collecting all writes in
the cache, and (b), writing the file as an Interval file, to
overall performance gains. As noted above, the
experiments provided in [28], where the cache was
utilized but the data was written out as a traditional file,
provide some insight into this issue and suggest that
utilizing the Interval-based file format is the primary
contributor to increased parallel I/O performance.
However, more studies are needed to draw definitive
conclusions.

5.2 Collaborative I/O

The MPI-Tile-IO benchmark [15] models quite well the
idea of collaborative I/O discussed above. A producer
application consists of a set of processes that generate a
dense two-dimensional set of pixel data that is written
to a shared file (MPI-Tile-Writer), and the consuming
application consists of a set of processes that read the
pixel data from the shared file and display the data on a
tiled wallboard (MPI-Tile-Reader). The tiled wallboard

consists of a set of individual monitors that together
display the entire image. Adjacent monitors (in the
horizontal and vertical directions) share a column of
pixel data to help blend the individual components of
the image into a smoother aggregate image. Such
columns of shared data are often referred to as “guard
cells”.
 For clarity of presentation, assume that both
applications consist of four processes, that the image
data is displayed on a tiled wallboard with four
monitors, and that there is a one-to-one mapping
between the tile reader processes and the monitors on
the display wall. This is shown in Figure 5. The dashed
lines in the figure represent the pixel data that is shared
between processes P0 and P1. While we do not show the
interval sets that would be created for the application
processes, we note that all of the intervals associated
with the writer processes are private. The interval sets
associated with the reader processes, however, contain
both private and shared intervals.

Figure 4. This graph shows the time required to
produce checkpoint files as a function of the number
of processors and the data file format.

Figure 5. The figure shows four display devices, and
the pixel data that is shared between processes P0
and P1.

These file access patterns are quite challenging for
current parallel I/O implementations. There are three

reasons for such difficulties. First, there are a large
number of noncontiguous file accesses, each of which
requires a separate I/O operation. Second, the file
regions written by producer processes overlap with the
file regions written by other producer processes. This
can lead to the serialization of file accesses due to false
sharing. Third, complex locking is required to access
the guard cells.
 Utilizing the Interval-IO system to implement the
producer and consumer applications is also
problematic. It is expected that the I/O performed by
the writer processes would be efficient because they
would write their data to the file in the same way it is
stored in their caches. Thus each process could write all
of its data to disk in a single I/O operation.
 The issue is more complex in the case of the
consumer processes, however, because the data is not
stored on disk according to their interval sets. In fact,
the consumer processes would be unable to access the
data at all because the file metadata describes the
interval sets of the producer processes. Thus in order to
utilize the Interval-IO system an additional translation
step is required that converts the producer’s interval set
into one that can be efficiently read (and understood) by
the consumers. The question, then, is whether the
benefits of using interval-IO outweigh the costs of
performing the translation. We conducted two sets of
experiments to gain insight into this issue.

5.2.1 Experimental Design

The first set of experiments was designed to get a
handle on the possible benefits that could be obtained
by using interval files with the MPI-Tile-IO
benchmark. We utilized the Interval-IO system for the
tile writer application, and handcrafted a second
interval file that matched the interval set of the tile
reader. We then studied their performance separately,
and compared the results to those obtained using
unmodified ROMIO. If there were not a significant
difference in performance without the overhead of the
translation tool, then it would stand to reason that the
Interval-IO system would not be effective in supporting
cooperative I/O.
 We performed these experiments on the Ranger
cluster at the Texas Advanced Computing Center. At
the time of these experiments, Ranger consisted of
3936 SunBlade x6420 blade nodes, each of which
contained four quad-core AMD Opteron processors for
a total of 62,976 cores. Each blade was running a
2.6.18.8 x86-64 Linux kernel from kernel.org. Ranger
was attached to a 1.73 petabyte Lustre file system
comprised of 72 Sun x4500 disk servers, each
containing 48 SATA drives.

 We varied the size of the display wall between a 3x3
and an 8x8 array of monitors. We also maintained a
one-to-one mapping between the number of monitors
and the number of readers and writers.

5.2.2 Experimental Results

The results of these experiments are shown in Figure 6.
As can be seen, the read time was reduced by as much
as 35% (in the 8x8 configuration) when compared to
ROMIO. More significantly, however, the write time
was reduced by as much as 90% in the 7x7
configuration. It should be noted that ROMIO was
unable to complete write operations for the 8x8
configuration within the 1-hour allotted run time.

As noted above, the reasons for the relatively poor
performance of ROMIO with respect to the tile writer
include a large number of noncontiguous I/O operations
and the serialization of write operations due to false
sharing. In the case of the Interval I/O system, all of the
writing was performed without acquiring locks since
the system detected that none of the intervals were
shared. Also, all of the noncontiguous writes were
collected in the cache and only a single I/O operation
was required to write the data to disk.

5.2.3 Translation Time

The second set of experiments investigated the costs
associated with performing the translation between the
interval sets of the tile writer processes and those of the
tile reader processes. While the basic functionality of
the translator tool has been implemented, it had not
been integrated into the Interval I/O system at the time
of this writing. We thus executed the translator as a
stand-alone application, and recorded the time required
to perform the interval set translation for the same
configurations used in the first experiments. The results
are shown in Figure 7.

Figure 6. This graph shows the time taken to
perform the I/O operations for the tile reader and
writer as a function of the parallel I/O system and
system configuration.

As can be seen, the amount of time required to perform
the translations was quite reasonable, and was more
than offset by the significant performance increases
obtained through the utilization of interval files. We
conclude that the Interval I/O system is a promising
approach to supporting collaborative I/O.

Figure 7. This graph shows the costs of performing
the translation between interval sets as a function of
the system configuration.

6. Related Work

The DAChe project [24] is also exploring the use of a
caching system to improve the performance of parallel
I/O. The DAChe system is a block-based, client-side
cache designed to use remote memory access (RMA) to
perform cache management across cluster nodes. The
primary difference between DAChe and the interval-
based cache developed in this research is that DAChe
caches fixed size blocks while our system caches
intervals. Because DAChe cannot distinguish between
shared and private data, it must provide mutual
exclusion for every data block access, while only
shared intervals require locking in our system. Utilizing
intervals as the basic unit of caching can also
significantly reduce false sharing. Both systems can
provide increased write performance by collecting
writes in the cache.

View I/O [32] provides another approach to
increasing parallel I/O performance based on file views.
Like Interval I/O, View I/O makes use of MPI-IO file
views to optimize transfers between the application and
the file system. It combines smaller, noncontiguous
accesses into large chunks, and uses associated
metadata to allow the data to be later reorganized into
linear file order.

One primary difference between View I/O and
Interval I/O is that View I/O requires support from the
underlying file system to reorganize file data while
Interval I/O is implemented at the application layer and
requires no file system support. While View I/O
reorganizes data at the I/O disks, we store the data in

the same format as it appears in the cache, along with
additional metadata that allows the data to be
reorganized (if necessary) when the file is read.

Sehrish, Wang, and Thakur [35] developed a
conflict detection algorithm to minimize the locking
overhead when an application is executing in Atomic
Mode. This is essentially equivalent to detecting shared
and private intervals in the Interval I/O system,
although the techniques for doing so are different.
However, their system does not provide an efficient
distributed locking system in the case of shared regions,
and does not provide the significant performance
enhancements that come with using interval files.

Other techniques have been developed specifically
to address the issue of noncontiguous file accesses,
including List I/O [35] and Data Type I/O [36]. While
these techniques can reduce the number of file system
accesses that result from noncontiguous I/O patterns,
they fail to provide a conflict detection mechanism to
reduce the overhead of locking. Also, the Interval I/O
system largely obviates the need for such approaches
since the intervals belonging to a process are stored
contiguously on disk.

The Adaptable IO System (ADIOS) project [33] is
also addressing the IO performance limitations of HPC
systems. ADIOS exposes a high level API that supports
structured, self-describing data. It provides a variety of
different IO methods, which are selectable via an XML-
based IO configuration file. Similar to our use of
interval files, ADIOS relies on an internal file format
called BP to achieve best performance.

A software cache, which is a significant component
of the Interval-IO system, is absent from ADIOS.
However, ADIOS does support several staging methods
(e.g., DataStager [39] and DataSpaces [40]), which
provide in memory data to the application as an
external component. Interval-IO differs from ADIOS
most significantly in its support of the MPI-IO
interface, which, as noted above, is one of the key goals
of this research. This requires the Interval-IO system to
support random access and the MPI-IO file consistency
semantics.

The Parallel Log-structured File System (PLFS,
[27]) is a virtual FUSE file system designed specifically
to optimize the writing of application checkpoint data.
It is a “virtual interposition layer” that sits between the
parallel application and the underlying parallel file
system. PLFS takes application data that the processes
are writing to a shared file, and rearranges it such that
each process is actually writing to its own independent
file.

The goal of rearranging application data to increase
parallel I/O performance is common to PLFS and the
Interval-IO system. As with ADIOS, however, one of
the major differences in the two systems is that

Interval-IO is implemented within MPI-IO itself and
fully supports the MPI-IO interface. This includes
support for MPI-IO file consistency semantics, which
could be, but is not currently, implemented within
PLFS. Also, the Interval-IO system can support
functionality such as I/O cooperation between
applications that is not a concern of PLFS. Finally,
Interval-IO creates a single shared file rather than one
file per process as is done in PLFS.

7. Conclusions

In this paper, we have introduced the Interval I/O
system and provided experimental results showing the
effectiveness of this new approach. The primary
remaining task is to integrate the translation tool into
the Interval I/O system. Once this is accomplished, we
plan to investigate more fully the concept of
cooperative I/O.

8. Acknowledgements

This work was supported in part by grant number
0702748 from the National Science Foundation.

8. References

[1] “Top 500 Supercomputing Sites.”[Online]. Available:
http://www.top500.org/. [Accessed: 09-Mar-2010].

[2] “Lustre File System - Overview.”[Online]. Available:
http://www.oracle.com/us/products/servers-
storage/storage/storage-software/031855.htm. [Accessed: 09-
Mar-2010].

[3] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur,
“PVFS: A Parallel File System for Linux Clusters,” in
Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, 2000, p. 317–327.

[4] “Panasas.”[Online]. Available: http://www.panasas.com.

[5] Message Passing Interface Forum, “MPI-2: Extensions
to the Message-Passing Interface,” MPI-2: Extensions to the
Message-Passing Interface. [Online]. Available:
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.

[6] G. Hernandez, “Large scale parallel and distributed
simulations and visualizations of the Olami-Feder-
Christiensen earthquake model,” in Parallel and Distributed
Processing Symposium., Proceedings 15th International,
2001.

[7] J. B. Drake, P. W. Jones, and G. R. Carr, “Overview of
the Software Design of the Community Climate System
Model,” International Journal of High Performance
Computing Applications, vol. 19, no. 3, pp. 177-186, Aug.
2005.

[8] X. Ma and A. Choudhary, with A. Ching, W. and H.,
“Exploring I/O Strategies for Parallel Sequence Database

Search Tools with S3aSim.,” in Proceedings of the 15th
International Symposium on High Performance Distributed
Computing, 2006.

[9] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune,
and R. Samtaney, “Grid -Based Parallel Data Streaming
implemented for the Gyrokinetic Toroidal Code,” in
Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, 2003, p. 24.

[10] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters.,” in Conference on File
and Storage Technologies, IBM Almaden Research Center,
San Jose, California, 2002.

[11] P. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed,
“Input/Output Characteristics of Scalable Parallel
Applications,” IN PROCEEDINGS OF SUPERCOMPUTING
\uc0\u8217{}95, 1995.

[12] A. Ching, A. Choudhary, K. Coloma, W.-k Liao, R.
Ross, and W. Gropp, “Noncontiguous I/O Access Through
MPI-IO,” in the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID’03), 2003.

[13] A. Ching, A. Choudhary, W.-k Liao, L. Ward, and N.
Pundit, “Evaluating I/O Characteristics and Methods for
Storing Structured Scientific Data,” presented at the the 20th
International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

[14] R. Ross, R. Latham, W. Gropp, R. Thakur, and B.
Toonen, “Implementing MPI-IO Atomic Mode Without File
System Support,” in the 5th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid
2005), 2005.

[15] “Parallel I/O Benchmarking Consortium.”[Online].
Available: http://www.mcs.anl.gov/research/projects/pio-
benchmark/.

[16] “FLASH I/O benchmark routine -- parallel HDF 5,”
FLASH I/O benchmark routine -- parallel HDF 5. [Online].
Available:
http://flash.uchicago.edu/~zingale/flash_benchmark_io/.
[Accessed: 13-Feb-2010].

[17] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-
Device Interface for Implementing Portable Parallel-I/O
Interfaces,” in the 6th Symposium on the Frontiers of
Massively Parallel Computation, 1996.

[18] R. Thakur, R. Ross, and W. Gropp, “Users Guide for
ROMIO: A High-Performance, Portable MPI-IO
Implementation.”Technical Memorandum ANL/MCS-TM-
234, Mathematics and Computer Science Division, Argonne
National Laboratory, Revised May 2004.

[19] “MPICH2: High-performance and Widely Portable
MPI.”[Online]. Available:
http://www.mcs.anl.gov/research/projects/mpich2/.
[Accessed: 09-Mar-2010].

[20] R. Thakur and A. Choudhary, “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,”
Scientific Programming, vol. 5, no. 4, pp. 301-317, Winter.

[21] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and
Collective I/O in ROMIO,” in Proceedings of the The 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999, p. 182.

[22] “MPI File Views.”[Online]. Available: http://www-
unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-
2.0/node184.htm.

[23] K. Coloma, A. Choudhary, L. Ward, E. Russell, and S.
Tideman, with Wei-keng Liao, “Collective caching:
application-aware client-side file caching,” in HPDC-14.
Proceedings. 14th IEEE International Symposium on High
Performance Distributed Computing, 2005., Research
Triangle Park, NC, USA, pp. 81-90.

[24] K. Coloma, A. Choudhary, W.-k Liao, L. Ward, and S.
Tideman, “DAChe: Direct Access Cache System for Parallel
I/O,” in International Supercomputer Conference, 2005.

[25] K. Coloma, A. Choudhary, W.-k Liao, L. Ward, E.
Russell, and N. Pundit, “Scalable High-level Caching for
Parallel I/O,” in The 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), 2004.

[26] J. Logan and P. M. Dickens, “Using Object Based Files
for High Performance Parallel I/O,” in Intelligent Data
Acquisition and Advanced Computing Systems: Technology
and Applications, 4th IEEE Workshop on, 2007, pp. 149-154.

[27] J. Bent et al., “PLFS: a checkpoint filesystem for
parallel applications,” in SC Conference, Los Alamitos, CA,
USA, 2009, vol. 0, pp. 1-12.

28] B. Fryxell et al., “FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes,” The Astrophysical Journal
Supplement Series, no. 131, pp. 273-334, Nov. 2000.

[29] “Parallel HDF5.”[Online]. Available:
http://www.hdfgroup.org/HDF5/PHDF5/. [Accessed: 07-Feb-
2009].

[30] A. Choudhary et al., with Jianwei Li and Wei-keng
Liao, “Parallel netCDF: A High-Performance Scientific I/O
Interface,” in Supercomputing, 2003 ACM/IEEE Conference,
2003, p. 39.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms, Second Edition, 2nd ed.
The MIT Press, 2001.

[32] F. Isaila and W. F. Tichy, “View I/O: improving the
performance of non-contiguous I/O,” in the Third IEEE
International Conference on Cluster Computing, 2003, pp.
336-343.

[33] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan,
“Adaptable, metadata rich IO methods for portable high
performance IO,” in Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed
Processing, 2009.

[34] S. Sehrish, J. Wang, and R. Thakur, “Conflict Detection
Algorithm to Minimize Locking for MPI-IO Atomicity,” in
Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 2009, pp. 143-153.

[35] R. Thakur, W. Gropp, and E. Lusk, “On implementing
MPI-IO portably and with high performance,” in Proceedings
of the sixth workshop on I/O in parallel and distributed
systems, Atlanta, Georgia, United States, 1999, pp. 23-32.

[36] A. Ching, A. Choudhary, W.-k Liao, R. Ross, and W.
Gropp, “Efficient Structured Data Access in Parallel File
Systems,” in the IEEE International Conference on Cluster
Computing, 2003.

[37] Logan, J. The Interval I/O System for High Performance
Parallel I/O. Ph.D. Dissertation, Department of Computer
Science, University of Maine.

[38] Logan, J. and P. Dickens. “Improving I/O Performance
through the Dynamic Remapping of Object Sets,” in IEEE
International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and
Applications, 21-23 September 2009, Rende (Cosenza), Italy.

[39] Abbasi, H., et al., “DataStager: Scalable Data Staging
Services for Petascale Applications,” in HPDC’09, June 11–
13, 2009, Munich, Germany.

[40] Docan, C., Prashar, M., and S. Klasky, “DataSpaces: An
Interaction and Coordination Framework for Coupled
Simulation Workflows,” in HPDC'10, June 20–25, 2010,
Chicago, Illinois, USA.`

