
 

Towards a High Performance Implementation of 

MPI-IO on the Lustre File System 
Phillip Dickens, Jeremy Logan 

Department of Computer Science, University of Maine 

Orono, Maine, USA 
 dickens@umcs.maine.edu 
 jeremy.logan@maine.edu 

 
Abs tra ct—Lustre is becoming an increasingly important file system 

for large-scale computing clusters. The problem is that many data-
intensive applications use MPI-IO for their I/O requirements, and it 
has been well documented that MPI-IO performs poorly in a Lustre file 
system environment. However, the reasons for such poor performance 
are not currently well understood. We believe that the primary reason 
for poor performance is that the assumptions underpinning most of the 
parallel I/O optimizations implemented in MPI-IO do not hold in a 
Lustre environment. Perhaps the most important assumption that 
appears to be incorrect is that optimal performance is obtained by 
performing large, contiguous I/O operations. Our research suggests 
that this is often the worst approach to take in a Lustre file system. In 
fact, we found that the best performance is sometimes achieved when 
each process performs a series of smaller, non-contiguous I/O 
requests. In this paper, we provide experimental results showing that 
such assumptions do not apply in Lustre, and explore new approaches 
that appear to provide significantly better performance.  

 

I. INTRODUCTION 

 
Large-scale computing clusters with hundreds to tens of 

thousands of processors are being increasingly used to execute 
large, data-intensive applications in several scientific domains. 
Such domains include, for example, high-resolution simulation 
of natural phenomenon, large-scale image analysis, climate 
modelling, and complex financial modelling. The I/O 
requirements of such applications can be staggering, ranging 
from terabytes to petabytes and beyond, and managing such 
massive data sets has become a significant bottleneck in 
application performance. Thus solving this I/O scalability 
problem has become a critical challenge in high-performance 
computing.  

This issue has led to the development of powerful parallel file 
systems that can provide tremendous aggregate storage capacity 
and highly concurrent access to the underlying data (e.g., Lustre 
[1], GPFS [20], Panasas [8]). Another important research path 
has been the development of parallel I/O interfaces with high-
performance implementations that can work with the file system 
API to optimise access to the underlying storage. An important 
combination of file system/parallel I/O interface is Lustre, an 
object-based, parallel file system developed for extreme-scale 
computing clusters, and MPI-IO [6], the most widely-used The 

problem, however, is that there is currently no implementation 
of the MPI-IO standard that is optimised for the Lustre file 
system, and the performance of current implementations is, by 
and large, quite poor [3, 15, 26]. Given the wide spread use of 
MPI-IO, and the expanding utilization of the Lustre file system, 
it is important to provide an MPI-IO implementation that can 
provide high-performance, scalable I/O to MPI applications 
executing in the Lustre file system environment. 

There are two key challenges associated with achieving high 
performance with MPI-IO in a Lustre environment. First, 
Lustre exports only the POSIX file system API, which was not 
designed for a parallel I/O environment and provides little 
support for parallel I/O optimizations. This has led to the 
development of approaches (or “workarounds”) that can 
circumvent (most of) the performance problems inherent in 
POSIX-based file systems, such that the performance of MPI-
IO in such environments can be significantly improved (e.g., 
two-phase I/O[22, 23], data-sieving[25], DataType I/O [11]). 
The second problem is that the assumptions upon which most 
of these optimizations are based do not hold in a Lustre 
environment.  

The most important and widely held assumption, and the 
primary focus of this paper, is that performing large, contiguous 
I/O operations provides the optimal performance. The research 
presented here provides evidence that this may, in fact, be the 
worst approach in a Lustre file system environment. In fact, the 
best performance may be achieved when each process performs 
a series of smaller, non-contiguous I/O requests. 

These are clearly non-intuitive results, and one focus of this 
paper is to document that this widely held assumption is one of 
the primary reasons for the poor performance of MPI-IO in 
Lustre. The other goal of this paper is to explore alternative 
implementations that can provide significantly enhanced 
performance. The longer-term goal of this research is to provide 
a high-performance implementation of MPI-IO that is 
optimized for the Lustre file system. Toward this end, we are 
integrating the results of this research into ROMIO[25], a high-
performance implementation of the MPI-IO standard developed 
and maintained at Argonne National Laboratory. We chose to 
work with ROMIO for three reasons: it is the most widely used 
implementation of MPI-IO, it is highly portable, and it provides 



a powerful parallel I/O infrastructure that can be leveraged in 
this research.  

In this paper, we investigate the performance of collective 
write operations in two implementations of the MPI-IO 
standard in two Lustre file systems. We focus on the collective 
write operations because they represent one of the most 
important parallel I/O optimizations defined in the MPI-IO 
standard. We are also interested in the collective write 
operations because they have been identified as exhibiting 
particularly poor performance in a Lustre file system.  

There are two primary contributions of this paper. First, it 
increases our understanding of the interactions between current 
MPI-IO implementations, the underlying assumptions upon 
which they are built, and the Lustre architecture. Second, it 
shows how the implementation of collective I/O operations can 
be more closely aligned with Lustre’s object-based storage 
architecture, resulting in significant increases in performance. 
This paper should be of interest to a large segment of the high-
performance computing community given the importance of 
both MPI-IO and Lustre to large-scale, scientific computing.  

The rest of this paper is organized as follows. In Section 2, 
we provide background information on MPI-IO and ROMIO. 
In Section 3, we discuss the Lustre architecture. In Section 4, we 
discuss different aggregation patterns in collective I/O 
implementations. In Section 5, we describe the experimental 
design, and provide our results in Section 6. In Section 7, we 
discuss related work, and we provide our conclusions in Section 
8. 

II. BACKGROUND 

 
The I/O requirements of parallel, data-intensive applications 

have become the major bottleneck in many areas of scientific 
computing. Historically, the reason for such poor performance 
has been the I/O access patterns exhibited by scientific 
applications. In particular, it has been well established that each 
process tends to make a large number of small I/O requests, 
incurring on each such request the high latency overhead of 
performing I/O across a network [10, 13, 24]. However, it is 
often the case that in the aggregate, the processes are performing 
large, contiguous I/O operations, which historically have made 
much better use of the parallel I/O hardware.  

MPI-IO [6], the I/O component of the MPI2 standard, was 
developed (in part at least) to take advantage of such global 
information to enhance parallel I/O performance. One of the 
most important mechanisms through which such global 
information can be obtained and leveraged is a set of collective 
I/O operations, where each process provides to the 
implementation information about its individual I/O request. 
The rich and flexible parallel I/O API defined in MPI-IO 
facilitates collective operations by enabling the individual 
processes to express complex parallel I/O access patterns in a 
single request (e.g., non-contiguous access patterns). Once the 
implementation has a picture of the global I/O request, it can 
combine the individual requests and submit them in a way that 
optimizes the particular parallel I/O subsystem.  

The most widely used implementation of the MPI-IO 
standard is ROMIO [25], which is integrated into the MPICH2 
MPI library developed and maintained at Argonne National 

Laboratory. ROMIO provides key optimizations for enhanced 
performance, and is implemented on a wide range of 
architectures and file systems.  

The portability of ROMIO stems from an internal layer called 
ADIO [21] upon which ROMIO implements the MPI-IO 
interface. ADIO implements the file system dependent features, 
and is thus implemented separately for each file system (see 
Figure 1).  

 

 

Figure 1: ROMIO is implemented on top of ADIO, which is implemented 
separately for each file system. 

 
ROMIO implements the collective I/O operations using a 
technique termed two-phase I/O [23, 25]. Consider a collective 
write operation. In the first phase, the processes exchange their 
individual I/O requests to determine the global request. The 
processes then use inter-process communication to re-distribute 
the data to a set of aggregator processes. The data is re-
distributed such that each aggregator process has a large, 
contiguous chunk of data that can be written to the file system 
in a single operation. The parallelism comes from the aggregator 
processes performing their writes concurrently. This is 
successful because it is significantly more expensive to write to 
the file system than it is to perform inter-process 
communication.  
 To help clarify these ideas, consider the following 
example. Assume an SPMD computation where each process 
computes over a different region of a two-dimensional file (16 x 
16 array of integers). Further, assume there are four compute 
nodes, four I/O nodes, and that each process has a 4 x 4 sub-
array. The array is stored on disk in row-major order with a 
stripe unit equal to one row of the array. Also, the array is 
distributed among the processes in a block-block distribution as 
shown in Figure 2.  
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Assume each process is ready to write its data to disk and enters 
into a collective write operation. In the first phase, the processes 
exchange information about their individual requests to 
determine the aggregate I/O request, and determine the best 
strategy for writing the data to disk. In this case, it is determined 
to be optimal for each process to write a single row of the array 
to disk in parallel. To implement this strategy, process P0 must 
send array elements (1, 0) and (1, 1) to process P1, and must 
receive elements (0, 2) and (0, 3) from process P1. The 
exchanges between processes P2 and P3 are similar. Once each 
process receives the data it needs, they write their portion of the 
data to disk in one I/O request in parallel (note that in this 
example each process is an aggregator).  

We further explore collective write operations in the sections 
that follow. 

III. LUSTRE ARCHITECTURE 

Lustre consists of three primary components: file system 
clients (that request I/O services), object storage servers (OSSs) 
(that provide I/O services), and meta-data servers that manage 
the name space of the file system. Each OSS can support 
multiple Object Storage Targets (OSTs) that handle the duties of 
object storage and management. The scalability of Lustre is 
derived from two primary sources. First, file meta-data 
operations are de-coupled from file I/O operations. The meta-
data is stored separately from the file data, and once a client has 
obtained the meta-data it communicates directly with the OSSs 
in subsequent I/O operations. This provides significant 
parallelism because multiple clients can interact with multiple 
storage servers in parallel. The second driver for scalable 
performance is the striping of files across multiple OSTs, which 
provides parallel access to shared files by multiple clients.  

Lustre provides APIs allowing the application to set the stripe 
size, the number of OSTs across which the file will be striped 
(the stripe width), the index of the OST in which the first stripe 
will be stored, and to retrieve the striping information for a 
given file. The stripe size is set when the file is opened and 
cannot be modified once set. Lustre assigns stripes to OSTs in a 
round-robin fashion, beginning with the designated OST index.  

The POSIX file consistency semantics are enforced through a 
distributed locking system, where each OST acts as a lock server 
for the objects it controls [12]. The locking protocol requires 
that a lock be obtained before any file data can be modified or 
written into the client-side cache. While the Lustre 
documentation states that the locking mechanism can be 
disabled for higher performance [4], we have never observed 
such improvement by doing so.  

 

A. Known issues with Parallel I/O on Lustre 

 
Previous research efforts with parallel I/O on the Lustre file 

system have shed some light on factors contributing to the poor 
performance of MPI-IO, including the problems caused by I/O 
accesses that are not aligned on stripe boundaries [17, 18]. 
Figure 3 helps to illustrate the problem that arises when I/O 

accesses cross stripe boundaries. Assume the two processes are 
writing to non-overlapping sections of the file; however because 
the requests are not aligned on stripe boundaries, both processes 
are accessing different regions of stripe 1. Because of Lustre’s 
locking protocol, each process must acquire the lock associated 
with the stripe, which results in unnecessary lock contention. 
Thus the writes to stripe 1 must be serialized, resulting in 
suboptimal performance. 

 

Figure 3: Crossing Stripe Boundaries with Lustre 
 

An ADIO driver for Lustre has recently been added to 
ROMIO, appearing in the 1.0.7 release of MPICH2 [7]. This 
new Lustre driver adds support via hints for user settable 
features such as Lustre striping and direct I/O. In addition, the 
driver insures that disk accesses are aligned on Lustre stripe 
boundaries.  

However, our research suggests that these modifications are 
not sufficient to significantly improve the performance of MPI-
IO. This is because we believe the primary issue is the way the 
individual I/O requests are aggregated in a collective write 
operation, where the combined request is presented as large, 
contiguous data accesses.  

The problem with performing large, contiguous writes is that 
it can cause significant contention at the network layer, the OSS 
level, and the OST level. The point may be best explained with a 
simple example.  

Consider a two-phase collective write operation with the 
following parameters: four processes, a 32 MB file, a stripe size 
of 1 MB (within the recommended range of 1 to 4 MBs), eight 
OSTs, and a stripe width of eight. Assume the four processes 
have completed the first phase of the collective write operation, 
and that each process is ready to write a contiguous eight MB 
block to disk. Thus process P0 will write stripes 0 – 7, process 
P1 will write stripes 8 – 15, and so forth. This communication 
pattern is shown in Figure 4 below.  

Two problems become apparent immediately. First, every 
process is communicating with every OSS. Second, every 
process must obtain eight locks. Thus there is significant 
communication overhead (each process and each OSS must 
multiplex four separate, concurrent communication channels), 
and there is contention at each lock manager for locking services 
(but not for the locks themselves). While this is a trivial example, 
one can imagine significant degradation in performance as the 
file size, number of processes, and number of OSTs becomes 
large. Thus one flaw in the assumption that performing large, 
contiguous I/O operations provides the best parallel I/O 

Figure 2. Example system with (a) four compute processors and four I/O 
processors and (b) a 4x4 array partitioned in block-block order.  
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performance is that it does not account for the contention of file 
system resources (including the network).  

  

Figure 4: Communication pattern for two-phase I/O with Lustre. 

IV. AGGREGATION PATTERNS 

 
The key question then is whether the poor performance 

exhibited by MPI-IO collective write operations is a result of the 
contention created by (in the worst case) each aggregator 
process communicating with each OST, and, if so, can the data 
aggregation patterns be modified in a way that will result in 
better performance. In this section, we investigate such 
alternative approaches.  

We illustrate possible alternative approaches using a set of 
simple examples, and assume the following system 
characteristics: The file to be written is 16 MB, the stripe size is 
1 MB, and there are four OSTs. We assume a stripe width of 
four, meaning that the stripes are allocated among the four 
OSTs in a round robin fashion. This is shown in Figure 5.  

 
 
 
 
 

Figure 5: Allocation of Data Stripes to OSTs 

In this figure, the blocks represent the individual data stripes 
and are labelled with the OST on which that stripe is stored. 
Thus, for example, data stripe 0 is stored on OST 0, stripe 5 is 
stored on OST 1, stripe 6 is stored on OST 2, and so forth. 

Assume there are four aggregator processes, and that we are 
in the first phase of a two-phase collective write operation. As 
noted above, the current approach is to divide the file into four, 
contiguous (and non-overlapping) file regions, and to assign to 
each aggregator one such region. This pattern is shown in Figure 
6.  

 
 
 
 
 
 
 
 
 

Figure 6: Two-phase I/O file access pattern. Each processor must interact with 

each OST.  

 
 
We can reduce the number of OSTs with which each 

aggregator process must communicate by modifying the data 
aggregation pattern. Assume the size of the blocks to be written 
is increased to 2 MB, and that the blocks are allocated to the 
aggregator processes in a round robin pattern. This is shown in 
Figure 7. In this case, each aggregator writes one block of data, 
skips over the next three blocks in the file (i.e., the next six data 
stripes), then writes its second block of data, and so forth. Thus 
each aggregator process is still responsible for 4 MB of data, but 
because of the altered write pattern, now only communicates 
with two OSTs rather than four. The trade-off is that now each 
process must make two separate I/O requests to write to its data 
to disk. It is important to emphasize that the aggregator 
processes communicate with the same two OSTs throughout 
the collective write operation. This is because the number of 
aggregators is a multiple of the number of OSTs, and the block 
size is a multiple of the stripe size. 

 

Figure 7: Reducing the communication burden using smaller accesses. In this 

case, each processor communicates with two of the OSTs. 

 
We can further reduce the number of OSTs with which an 

aggregator process must communicate by reducing the block 
size to 1 MB (the stripe size). Again, the blocks to be written are 
allocated round robin among the aggregators. This new write 
patterns is shown in Figure 8. As in the examples above, each 
aggregator is still responsible for 4 MB of data, but only 
communicates with a single OST during the collective operation. 
The trade-off is that each aggregator must now make four 
individual I/O requests, each of which writes 1 MB of data to 
the file.  

 
 
 
 
 
 
 
 
 
 

Figure 8: Minimizing communication. Each processor requires access to data 

on only one OST. 

 
These alternative data aggregation strategies are widely known 

in the high-performance parallel I/O community, and are simply 
non-contiguous I/O operations. In fact, much of the research in 
parallel I/O has focused on developing alternative techniques, 
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such as two-phase I/O, that aggregate such small, non-
contiguous I/O requests to make larger, contiguous requests 
that are presented to the file system. In the next section, we 
provide experimental data comparing the performance of these 
approaches to parallel I/O. 

It is worth noting that a seemingly simple approach to 
alleviating such communication overhead would be to increase 
the stripe size such that it matches the large contiguous accesses 
performed by aggregators. While this might be effective in some 
cases, there are two difficulties with this solution in general. First, 
it is only possible to adjust the striping parameters for a Lustre 
file at creation time, so such a strategy cannot be applied to 
existing files. Second, the creation of exceedingly large stripes 
may cause performance issues if the file is to be read by another 
application with a different aggregation method.  

 

V. EXPERIMENTAL DESIGN 

 
We were interested in the impact of the data aggregation 

patterns on the throughput obtained when performing a 
collective I/O operation in a Lustre file system. To investigate 
this issue, we performed a set of experiments on two large-scale 
Lustre file systems at two different research facilities on the 
TeraGrid[9]. The TeraGrid was developed with funding from 
the National Science Foundation, and is the world’s largest open 
facility for scientific research. It consists of eleven research 
centers connected via a 40-gigabit per second backbone network. 
The Lustre file systems used in this research were located at two 
of the facilities on the TeraGrid: the National Center for 
Supercomputing Applications (NCSA, located at the University 
of Illinois at Urbana-Champaign) and Indiana University.  

We used the Tungsten cluster at NCSA, which consisted of 
2,560 Intel IA-32 Xeon 3.2 GHz processors divided into five 
sub-clusters, each containing 256 dual-processor nodes. Each of 
the sub-clusters had a 20-gigabit per second connection to the 
OSTs via a common switch, where each OST was connected to 
the switch via one gigabit Ethernet.  

The Lustre file system on Tungsten was served by a total of 
104 Object Storage Devices (OSTs), split over two mount 
points. The Lustre partition used in these experiments consisted 
of 32 OSTs. We used the ChaMPIon MPI implementation on 
Tungsten, which is a proprietary implementation of the MPI 
standard developed at MPI Software Technology. 

At Indiana University, we used the Big Red cluster that 
consisted of 768 IBM JS21 Blades, each with two dual-core 
PowerPC 970 MP processors and 8 GB of memory. The 
compute nodes were connected to Lustre through 24 Myricom 
10 gigabit Ethernet cards. The Lustre file system (Data 
Capacitor) is mounted on Big Red, and consists of 52 Dell 
servers running Red Hat Enterprise Linux, 12 DataDirect 
Networks S29550, and 30 DataDirect Networks 48 bay SATA 
disk chassis, for a total capacity of 535 Terabytes. 

The MPI implementation used on Big Red was MPICH, 
which was developed at Argonne National Laboratory and 
utilizes ROMIO for the I/O operations.  There were 96 OSTs 
on the Data Capacitor.  

We varied both the number of processes participating in the 
collective write operation and the data aggregation patterns.  For 

these experiments, we categorize such patterns based on the 
number of OSTs with which each aggregator process 
communicated. Thus, for example, the write pattern shown in 
Figure 8 would be termed a 1-OST pattern, Figure 7 would be 
categorized as a 2-OST pattern, and Figure 6 would be 
categorized as the 4-OST pattern. We varied the write pattern 
between 1-OST and 32-OST.  

On Tungsten, there were a total of 54 OSTs available on the 
partition to which we were assigned. We utilized 32 of these 
OSTs to simplify the experimentation (that is, to more easily 
modify the data aggregation patterns).  We varied the number of 
aggregator processes from 8 to 256. On Big Red, we were able 
to obtain 104 nodes, and thus used 52 OSTs, and experimented 
with 13, 26, 52, and 104 aggregator processes. The file was 8 
Gigabytes on Tungsten and 13 GB on Big Red (again chosen to 
simplify the experimentation). All of the tests used one 
processor per node, because we found that the connections 
between nodes and OSTs were quickly saturated, and very little 
performance increase was gained by using multiple processors 
per node for I/O. 

In these experiments, we simulated two-phase I/O by 
performing only the writes corresponding to the various 
aggregation patterns under consideration. That is, the 
appropriate data was assigned to each process without 
performing data re-distribution. We believe this to be valid 
based on the fact that the cost of writing to disk is orders of 
magnitude greater than the cost of inter-processor 
communication. The comparison with the existing MPI 
implementations (ChaMPIon on Tungsten, and MPICH on Big 
Red) was done by using a collective call to 
MPI_File_write_at_all. However, the data was 
distributed on the processes in a way that conformed to the 
expected aggregation pattern, and thus no data re-distribution 
was required in that case either. In all cases, the writes were 
aligned on stripe and lock boundaries. 
 

VI. EXPERIMENTAL RESULTS 

 
The results of the experiments are shown in Figures 9 and 10. 

First, consider the experimental data obtained from Big 
Red/Data Capacitor. The two most striking results are that the 
2-OST pattern consistently provided the best performance, and 
the 16-OST pattern and MPI consistently provided the worst 
performance. While the MPI results may have been affected by 
some additional processing in the two-phase I/O operation, it 
did not have to perform any data re-distribution. Thus we 
assume that its poor performance is due primarily to its 
aggregation patterns. This is supported by the fact that the 16- 



OST pattern, which included no additional processing, also 

 
 

Figure 9: Performance results from Big Red at Indiana University 

 
 

performed quite poorly, especially compared to the other OST 
aggregation patterns.  

It is also interesting to consider the results obtained when 
there were 104 aggregator processes. In particular, in the 16-
OST pattern, each aggregator process performed 16 individual 
I/O requests, each of which wrote 16 MB. In the 2-OST pattern, 
each aggregator performed 128 separate I/O requests, each of 
which wrote 2 MB.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Performance results from Tungsten at NCSA 

 
Now consider the results obtained on Tungsten shown in 

Figure 10. As can be seen, the best performance by far was 
obtained using the 1-OST aggregation pattern with 32 
aggregator processes. It can also be observed that MPI provided 
the worst performance in this configuration. As the number of 

aggregator processes was increased beyond 32, I/O 
performance began to degrade. With 64 processes, the best 
performance was observed with the 2-OST pattern. The 
difference in performance between the 2-OST pattern and other 
patterns was still significant, but was not of the magnitude of 
that observed with the 1-OST pattern. When the number of 
aggregators was increased to 128, other aggregation patterns 
began to provide the best performance. However, overall 
performance was significantly lower than that obtained with 32 
aggregator processes, and the differences in performance 
became much less pronounced. When the number of aggregator 
processes was increased to 256, I/O performance plummeted, 
and there was very little difference in the performance obtained 
from any configuration. 

We believe the results obtained with up to 64 aggregation 
processes are the most reliable results. This is because of the 
way the scheduler assigns nodes to requesting jobs. In particular, 
it tends to allocate the vast majority of nodes within the same 
sub-cluster. As noted above, each such sub-cluster only had a 
single 20-bit gigabit connection to the OSTs. Thus once the 
number of aggregator processes increased beyond 64, 
contention for this 20-gigabit connection began to dominate the 
cost of performing I/O.  

 

B. Discussion 

In these experiments, all MPI process communicated with all 
OSTs. This was because each MPI process wrote a contiguous 
block of data to disk, the stripe size was 1 MB, the file was 
striped across all OSTs, and the size of the blocks was never less 
than the number of OSTs. The fact that MPI-IO, and the 16- 
and 32-OST write patterns, consistently provided the worst 
performance strongly suggests that it was, in fact, the overhead 
of multiple processes talking to multiple OSTs that was 
responsible for the observed poor performance. This was 
further supported by the fact that the 1- and 2-OST patterns 
provided the best performance on Tungston and Big Red 
respectively.  Thus while it is not currently clear as to whether 
the 1- or 2-OST pattern should be used (we believe this is an 
architectural issue, where the more powerful networking 
infrastructure of Big Red enabled each process to communicate 
with more than one OST), it seems clear that communicating 
with a small number of OSTs is better than communicating with 
a large number of OSTs.  

These results also lend strong support to other studies of 
Lustre showing that maximum performance is obtained when 
individual processes write to independent files concurrently [4, 
26]. Further, it helps explain the commonly held belief of (at 
least some) Lustre developers that parallel I/O is not necessary 
in a Lustre environment, and does little to improve performance 
[2]. While we do not subscribe to this view, we now at least 
understand its origins.  

It is our belief that MPI-IO can provide excellent, and 
perhaps optimal, performance in a Lustre environment. This is 
because it offers considerable support for collective operations 
and provides tremendous flexibility. For example, the results 
obtained on Big Red show that a 2-OST pattern provides the 
best performance. Such a pattern is not possible without a 
parallel I/O API and supporting infrastructure. Other studies 



may show that the optimal pattern is, to some extent, 
architecture dependent. MPI-IO has the flexibility to adapt to 
such findings.  

However, these results do indicate that it is worthwhile to go 
down a (somewhat) different path in developing a high-
performance ADIO driver for Lustre. While it is certainly critical 
to ensure that all I/O requests are properly aligned with the data 
striping patterns, these results show that doing so is not 
sufficient to significantly improve the performance of MPI-IO. 
We base this conclusion on the fact that every experiment we 
performed, regardless of the aggregation pattern, was aligned 
with the striping patterns.  

Perhaps the weakest part of this study was the size of the 
clusters on which we were able to experiment. The TeraGrid 
systems on which this study was performed are very heavily used, 
and it is extremely difficult to grab a large number of processors 
for an extended period of time. However, we have had some 
success in obtaining dedicated time for a short duration, and will 
strive to perform similar studies with significantly larger Lustre 
systems.  

 

VII. RELATED WORK 

 
The most closely related work is from Yu et al. [26], who 

implemented the MPI-IO collective write operations using the 
Lustre file-join mechanism. In this approach, the I/O processes 
write separate, independent files in parallel, and then merge 
these files using the Lustre file-join mechanism. They showed 
that this approach significantly improved the performance of the 
collective write operation, but that the reading of a previously 
joined file resulted in low I/O performance. As noted by the 
authors, correcting this poor performance will require an 
optimization of the way a joined file’s extent attributes are 
managed.  The authors also provide an excellent performance 
study of MPI-IO on Lustre.  

Our approach does not require multiple independent writes 
to separate files, but does limit the number of Object Storage 
Targets (OST) with which a given process communicates. This 
maintains many of the advantages of writing to multiple 
independent files separately, but does not require the joining of 
such files. The performance analysis presented in this paper 
complements and extends the analysis performed by Yu et al.  

Larkin and Fahey [15] provide an excellent analysis of 
Lustre’s performance on the Cray XT3/XT4, and, based on 
such analysis, provide some guidelines to maximize I/O 
performance on this platform. They observed, for example, that 
to achieve peak performance it is necessary to use large buffer 
sizes, to have at least as many IO processes as OSTs, and, that at 
very large scale (i.e., thousands of clients), only a subset of the 
processes should perform I/O. While our research reaches some 
of the same conclusions on different architectural platforms, 
there are two primary distinctions. First, our research is focused 
on understanding of the poor performance of MPI-IO (or, more 
particularly, ROMIO) in a Lustre environment, and on 
implementing a new ADIO driver for object-based file systems 
such as Lustre. Second, our research is investigating both 
contiguous and non-contiguous access patterns while this related 
work focuses on contiguous access patterns only.  

In [18], it was shown that aligning the data to be written with 
the basic striping pattern improves performance. They also 
showed that it was important to align on lock boundaries. This is 
consistent with our analysis, although we expand the scope of 
the analysis significantly to study the algorithms used by MPI-IO 
(ROMIO) and determine (at least some of) the reasons for sub-
optimal performance. We also show how to modify ROMIO’s 
collective I/O algorithms to achieve significantly improved 
performance.  

There has also been a significant research effort focused on 
various techniques to enhance the performance of MPI-IO.  
DAChe [14] is a user-space client side cache that was shown to 
improve the performance of ROMIO on both Lustre and GPFS 
[14]. Active Buffering [16] has also been shown to improve the 
performance of parallel write operations using local buffering 
and performing the I/O in the background. In [19], an object-
based caching system is shown to improve the performance of 
ROMIO on the FLASH I/O benchmark [5].  There has also 
been significant research related to improving the performance 
of non-contiguous I/O requests in ROMIO [24], independent 
writes [17], and workarounds to the POSIX API (e.g., data 
sieving [22],  two-phase I/O [23]). Our research is similarly 
focused on improving the performance of ROMIO in a 
particular file system environment. We show that many of these 
techniques, which provide significant improvement in other file 
system environments, do not perform well in an object-based 
environment such as Lustre. Thus this research is focused on 
identifying the current approaches that do not work, explaining 
the reason for poor performance, and showing approaches to 
solving the performance issues. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

 
This research was motivated by the fact that MPI-IO 

performs poorly in Lustre file systems, and the reasons for such 
performance have been largely unknown. We hypothesized that 
the problem was related to the high overhead associated with 
writing large, contiguous blocks of data to the file system, which 
can require the multiplexing of many concurrent communication 
channels. We devised a series of experiments to test our 
hypothesis, and, based on the results, believe that this provides a 
very plausible explanation. 

Based on these results, we believe it is worthwhile to further 
explore these ideas, and to develop collective I/O algorithms 
that take such overhead costs into account when determining 
the most appropriate data aggregation patterns. Our longer-term 
goal is to incorporate such algorithms into an ADIO driver that 
is optimised for Lustre file systems.  

The results presented in this paper are limited by the relatively 
small size of the systems on which the experimental studies were 
conducted. Thus another focus of future research is to obtain 
access to larger systems for longer periods of time. Also, 
additional performance studies of Lustre itself need to be 
undertaken to develop a better understanding of the factors 
relating to the high overhead costs of communicating with 
multiple OSTs. Network contention and lock protocol 
processing are two likely causes, but there may be other 
contributing factors that not currently known. Finally, we are 
working to develop a methodology for determining the 



particular OST pattern that would provide the best performance 
for a given architecture.  
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