

Towards a High Performance Implementation of

MPI-IO on the Lustre File System
Phillip Dickens, Jeremy Logan

Department of Computer Science, University of Maine

Orono, Maine, USA
 dickens@umcs.maine.edu
 jeremy.logan@maine.edu

Abs tra ct—Lustre is becoming an increasingly important file system

for large-scale computing clusters. The problem is that many data-
intensive applications use MPI-IO for their I/O requirements, and it
has been well documented that MPI-IO performs poorly in a Lustre file
system environment. However, the reasons for such poor performance
are not currently well understood. We believe that the primary reason
for poor performance is that the assumptions underpinning most of the
parallel I/O optimizations implemented in MPI-IO do not hold in a
Lustre environment. Perhaps the most important assumption that
appears to be incorrect is that optimal performance is obtained by
performing large, contiguous I/O operations. Our research suggests
that this is often the worst approach to take in a Lustre file system. In
fact, we found that the best performance is sometimes achieved when
each process performs a series of smaller, non-contiguous I/O
requests. In this paper, we provide experimental results showing that
such assumptions do not apply in Lustre, and explore new approaches
that appear to provide significantly better performance.

I. INTRODUCTION

Large-scale computing clusters with hundreds to tens of

thousands of processors are being increasingly used to execute
large, data-intensive applications in several scientific domains.
Such domains include, for example, high-resolution simulation
of natural phenomenon, large-scale image analysis, climate
modelling, and complex financial modelling. The I/O
requirements of such applications can be staggering, ranging
from terabytes to petabytes and beyond, and managing such
massive data sets has become a significant bottleneck in
application performance. Thus solving this I/O scalability
problem has become a critical challenge in high-performance
computing.

This issue has led to the development of powerful parallel file
systems that can provide tremendous aggregate storage capacity
and highly concurrent access to the underlying data (e.g., Lustre
[1], GPFS [20], Panasas [8]). Another important research path
has been the development of parallel I/O interfaces with high-
performance implementations that can work with the file system
API to optimise access to the underlying storage. An important
combination of file system/parallel I/O interface is Lustre, an
object-based, parallel file system developed for extreme-scale
computing clusters, and MPI-IO [6], the most widely-used The

problem, however, is that there is currently no implementation
of the MPI-IO standard that is optimised for the Lustre file
system, and the performance of current implementations is, by
and large, quite poor [3, 15, 26]. Given the wide spread use of
MPI-IO, and the expanding utilization of the Lustre file system,
it is important to provide an MPI-IO implementation that can
provide high-performance, scalable I/O to MPI applications
executing in the Lustre file system environment.

There are two key challenges associated with achieving high
performance with MPI-IO in a Lustre environment. First,
Lustre exports only the POSIX file system API, which was not
designed for a parallel I/O environment and provides little
support for parallel I/O optimizations. This has led to the
development of approaches (or “workarounds”) that can
circumvent (most of) the performance problems inherent in
POSIX-based file systems, such that the performance of MPI-
IO in such environments can be significantly improved (e.g.,
two-phase I/O[22, 23], data-sieving[25], DataType I/O [11]).
The second problem is that the assumptions upon which most
of these optimizations are based do not hold in a Lustre
environment.

The most important and widely held assumption, and the
primary focus of this paper, is that performing large, contiguous
I/O operations provides the optimal performance. The research
presented here provides evidence that this may, in fact, be the
worst approach in a Lustre file system environment. In fact, the
best performance may be achieved when each process performs
a series of smaller, non-contiguous I/O requests.

These are clearly non-intuitive results, and one focus of this
paper is to document that this widely held assumption is one of
the primary reasons for the poor performance of MPI-IO in
Lustre. The other goal of this paper is to explore alternative
implementations that can provide significantly enhanced
performance. The longer-term goal of this research is to provide
a high-performance implementation of MPI-IO that is
optimized for the Lustre file system. Toward this end, we are
integrating the results of this research into ROMIO[25], a high-
performance implementation of the MPI-IO standard developed
and maintained at Argonne National Laboratory. We chose to
work with ROMIO for three reasons: it is the most widely used
implementation of MPI-IO, it is highly portable, and it provides

a powerful parallel I/O infrastructure that can be leveraged in
this research.

In this paper, we investigate the performance of collective
write operations in two implementations of the MPI-IO
standard in two Lustre file systems. We focus on the collective
write operations because they represent one of the most
important parallel I/O optimizations defined in the MPI-IO
standard. We are also interested in the collective write
operations because they have been identified as exhibiting
particularly poor performance in a Lustre file system.

There are two primary contributions of this paper. First, it
increases our understanding of the interactions between current
MPI-IO implementations, the underlying assumptions upon
which they are built, and the Lustre architecture. Second, it
shows how the implementation of collective I/O operations can
be more closely aligned with Lustre’s object-based storage
architecture, resulting in significant increases in performance.
This paper should be of interest to a large segment of the high-
performance computing community given the importance of
both MPI-IO and Lustre to large-scale, scientific computing.

The rest of this paper is organized as follows. In Section 2,
we provide background information on MPI-IO and ROMIO.
In Section 3, we discuss the Lustre architecture. In Section 4, we
discuss different aggregation patterns in collective I/O
implementations. In Section 5, we describe the experimental
design, and provide our results in Section 6. In Section 7, we
discuss related work, and we provide our conclusions in Section
8.

II. BACKGROUND

The I/O requirements of parallel, data-intensive applications

have become the major bottleneck in many areas of scientific
computing. Historically, the reason for such poor performance
has been the I/O access patterns exhibited by scientific
applications. In particular, it has been well established that each
process tends to make a large number of small I/O requests,
incurring on each such request the high latency overhead of
performing I/O across a network [10, 13, 24]. However, it is
often the case that in the aggregate, the processes are performing
large, contiguous I/O operations, which historically have made
much better use of the parallel I/O hardware.

MPI-IO [6], the I/O component of the MPI2 standard, was
developed (in part at least) to take advantage of such global
information to enhance parallel I/O performance. One of the
most important mechanisms through which such global
information can be obtained and leveraged is a set of collective
I/O operations, where each process provides to the
implementation information about its individual I/O request.
The rich and flexible parallel I/O API defined in MPI-IO
facilitates collective operations by enabling the individual
processes to express complex parallel I/O access patterns in a
single request (e.g., non-contiguous access patterns). Once the
implementation has a picture of the global I/O request, it can
combine the individual requests and submit them in a way that
optimizes the particular parallel I/O subsystem.

The most widely used implementation of the MPI-IO
standard is ROMIO [25], which is integrated into the MPICH2
MPI library developed and maintained at Argonne National

Laboratory. ROMIO provides key optimizations for enhanced
performance, and is implemented on a wide range of
architectures and file systems.

The portability of ROMIO stems from an internal layer called
ADIO [21] upon which ROMIO implements the MPI-IO
interface. ADIO implements the file system dependent features,
and is thus implemented separately for each file system (see
Figure 1).

Figure 1: ROMIO is implemented on top of ADIO, which is implemented
separately for each file system.

ROMIO implements the collective I/O operations using a
technique termed two-phase I/O [23, 25]. Consider a collective
write operation. In the first phase, the processes exchange their
individual I/O requests to determine the global request. The
processes then use inter-process communication to re-distribute
the data to a set of aggregator processes. The data is re-
distributed such that each aggregator process has a large,
contiguous chunk of data that can be written to the file system
in a single operation. The parallelism comes from the aggregator
processes performing their writes concurrently. This is
successful because it is significantly more expensive to write to
the file system than it is to perform inter-process
communication.
 To help clarify these ideas, consider the following
example. Assume an SPMD computation where each process
computes over a different region of a two-dimensional file (16 x
16 array of integers). Further, assume there are four compute
nodes, four I/O nodes, and that each process has a 4 x 4 sub-
array. The array is stored on disk in row-major order with a
stripe unit equal to one row of the array. Also, the array is
distributed among the processes in a block-block distribution as
shown in Figure 2.

ROMIO

ADIO

POSIX PVFS GPFS Lustre OBFS

IOP0 IOP1

IOP2

IOP3

P0

P1

P2

P3

Inter-processor

Communication

Network

0 1 2 3

0

1

2

3

P0 P1

P2 P3

Assume each process is ready to write its data to disk and enters
into a collective write operation. In the first phase, the processes
exchange information about their individual requests to
determine the aggregate I/O request, and determine the best
strategy for writing the data to disk. In this case, it is determined
to be optimal for each process to write a single row of the array
to disk in parallel. To implement this strategy, process P0 must
send array elements (1, 0) and (1, 1) to process P1, and must
receive elements (0, 2) and (0, 3) from process P1. The
exchanges between processes P2 and P3 are similar. Once each
process receives the data it needs, they write their portion of the
data to disk in one I/O request in parallel (note that in this
example each process is an aggregator).

We further explore collective write operations in the sections
that follow.

III. LUSTRE ARCHITECTURE

Lustre consists of three primary components: file system
clients (that request I/O services), object storage servers (OSSs)
(that provide I/O services), and meta-data servers that manage
the name space of the file system. Each OSS can support
multiple Object Storage Targets (OSTs) that handle the duties of
object storage and management. The scalability of Lustre is
derived from two primary sources. First, file meta-data
operations are de-coupled from file I/O operations. The meta-
data is stored separately from the file data, and once a client has
obtained the meta-data it communicates directly with the OSSs
in subsequent I/O operations. This provides significant
parallelism because multiple clients can interact with multiple
storage servers in parallel. The second driver for scalable
performance is the striping of files across multiple OSTs, which
provides parallel access to shared files by multiple clients.

Lustre provides APIs allowing the application to set the stripe
size, the number of OSTs across which the file will be striped
(the stripe width), the index of the OST in which the first stripe
will be stored, and to retrieve the striping information for a
given file. The stripe size is set when the file is opened and
cannot be modified once set. Lustre assigns stripes to OSTs in a
round-robin fashion, beginning with the designated OST index.

The POSIX file consistency semantics are enforced through a
distributed locking system, where each OST acts as a lock server
for the objects it controls [12]. The locking protocol requires
that a lock be obtained before any file data can be modified or
written into the client-side cache. While the Lustre
documentation states that the locking mechanism can be
disabled for higher performance [4], we have never observed
such improvement by doing so.

A. Known issues with Parallel I/O on Lustre

Previous research efforts with parallel I/O on the Lustre file

system have shed some light on factors contributing to the poor
performance of MPI-IO, including the problems caused by I/O
accesses that are not aligned on stripe boundaries [17, 18].
Figure 3 helps to illustrate the problem that arises when I/O

accesses cross stripe boundaries. Assume the two processes are
writing to non-overlapping sections of the file; however because
the requests are not aligned on stripe boundaries, both processes
are accessing different regions of stripe 1. Because of Lustre’s
locking protocol, each process must acquire the lock associated
with the stripe, which results in unnecessary lock contention.
Thus the writes to stripe 1 must be serialized, resulting in
suboptimal performance.

Figure 3: Crossing Stripe Boundaries with Lustre

An ADIO driver for Lustre has recently been added to
ROMIO, appearing in the 1.0.7 release of MPICH2 [7]. This
new Lustre driver adds support via hints for user settable
features such as Lustre striping and direct I/O. In addition, the
driver insures that disk accesses are aligned on Lustre stripe
boundaries.

However, our research suggests that these modifications are
not sufficient to significantly improve the performance of MPI-
IO. This is because we believe the primary issue is the way the
individual I/O requests are aggregated in a collective write
operation, where the combined request is presented as large,
contiguous data accesses.

The problem with performing large, contiguous writes is that
it can cause significant contention at the network layer, the OSS
level, and the OST level. The point may be best explained with a
simple example.

Consider a two-phase collective write operation with the
following parameters: four processes, a 32 MB file, a stripe size
of 1 MB (within the recommended range of 1 to 4 MBs), eight
OSTs, and a stripe width of eight. Assume the four processes
have completed the first phase of the collective write operation,
and that each process is ready to write a contiguous eight MB
block to disk. Thus process P0 will write stripes 0 – 7, process
P1 will write stripes 8 – 15, and so forth. This communication
pattern is shown in Figure 4 below.

Two problems become apparent immediately. First, every
process is communicating with every OSS. Second, every
process must obtain eight locks. Thus there is significant
communication overhead (each process and each OSS must
multiplex four separate, concurrent communication channels),
and there is contention at each lock manager for locking services
(but not for the locks themselves). While this is a trivial example,
one can imagine significant degradation in performance as the
file size, number of processes, and number of OSTs becomes
large. Thus one flaw in the assumption that performing large,
contiguous I/O operations provides the best parallel I/O

Figure 2. Example system with (a) four compute processors and four I/O
processors and (b) a 4x4 array partitioned in block-block order.

Process 0

Stripe 0 Stripe 1

OST 2

Stripe 2

Process 1

OST 1

OST 0

performance is that it does not account for the contention of file
system resources (including the network).

Figure 4: Communication pattern for two-phase I/O with Lustre.

IV. AGGREGATION PATTERNS

The key question then is whether the poor performance

exhibited by MPI-IO collective write operations is a result of the
contention created by (in the worst case) each aggregator
process communicating with each OST, and, if so, can the data
aggregation patterns be modified in a way that will result in
better performance. In this section, we investigate such
alternative approaches.

We illustrate possible alternative approaches using a set of
simple examples, and assume the following system
characteristics: The file to be written is 16 MB, the stripe size is
1 MB, and there are four OSTs. We assume a stripe width of
four, meaning that the stripes are allocated among the four
OSTs in a round robin fashion. This is shown in Figure 5.

Figure 5: Allocation of Data Stripes to OSTs

In this figure, the blocks represent the individual data stripes
and are labelled with the OST on which that stripe is stored.
Thus, for example, data stripe 0 is stored on OST 0, stripe 5 is
stored on OST 1, stripe 6 is stored on OST 2, and so forth.

Assume there are four aggregator processes, and that we are
in the first phase of a two-phase collective write operation. As
noted above, the current approach is to divide the file into four,
contiguous (and non-overlapping) file regions, and to assign to
each aggregator one such region. This pattern is shown in Figure
6.

Figure 6: Two-phase I/O file access pattern. Each processor must interact with

each OST.

We can reduce the number of OSTs with which each

aggregator process must communicate by modifying the data
aggregation pattern. Assume the size of the blocks to be written
is increased to 2 MB, and that the blocks are allocated to the
aggregator processes in a round robin pattern. This is shown in
Figure 7. In this case, each aggregator writes one block of data,
skips over the next three blocks in the file (i.e., the next six data
stripes), then writes its second block of data, and so forth. Thus
each aggregator process is still responsible for 4 MB of data, but
because of the altered write pattern, now only communicates
with two OSTs rather than four. The trade-off is that now each
process must make two separate I/O requests to write to its data
to disk. It is important to emphasize that the aggregator
processes communicate with the same two OSTs throughout
the collective write operation. This is because the number of
aggregators is a multiple of the number of OSTs, and the block
size is a multiple of the stripe size.

Figure 7: Reducing the communication burden using smaller accesses. In this

case, each processor communicates with two of the OSTs.

We can further reduce the number of OSTs with which an

aggregator process must communicate by reducing the block
size to 1 MB (the stripe size). Again, the blocks to be written are
allocated round robin among the aggregators. This new write
patterns is shown in Figure 8. As in the examples above, each
aggregator is still responsible for 4 MB of data, but only
communicates with a single OST during the collective operation.
The trade-off is that each aggregator must now make four
individual I/O requests, each of which writes 1 MB of data to
the file.

Figure 8: Minimizing communication. Each processor requires access to data

on only one OST.

These alternative data aggregation strategies are widely known

in the high-performance parallel I/O community, and are simply
non-contiguous I/O operations. In fact, much of the research in
parallel I/O has focused on developing alternative techniques,

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File

P0

OSTs:

0,1

P1

OSTs:

2,3

P2

OSTs:

0,1

P3

OSTs:

2,3

Process P0 Process P1 Process P2 Process P3

0 8

16 24

OSS

OSS

OSS

OSS

7 15

23 31
6 14

22 30
5 13

21 29
4 12

20 28

3 11

19 27

2 10

18 26
1 9

17 25

 OST 0 OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File
1 MB

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File

P0

OSTs:

0,1,2,3

P1

OSTs:

0,1,2,3

P2

OSTs:

0,1,2,3

P3

OSTs:

0,1,2,3

Aggregators

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

File

P0

OSTs:

0

P1

OSTs:

1

P2

OSTs:

2

P3

OSTs:

3

such as two-phase I/O, that aggregate such small, non-
contiguous I/O requests to make larger, contiguous requests
that are presented to the file system. In the next section, we
provide experimental data comparing the performance of these
approaches to parallel I/O.

It is worth noting that a seemingly simple approach to
alleviating such communication overhead would be to increase
the stripe size such that it matches the large contiguous accesses
performed by aggregators. While this might be effective in some
cases, there are two difficulties with this solution in general. First,
it is only possible to adjust the striping parameters for a Lustre
file at creation time, so such a strategy cannot be applied to
existing files. Second, the creation of exceedingly large stripes
may cause performance issues if the file is to be read by another
application with a different aggregation method.

V. EXPERIMENTAL DESIGN

We were interested in the impact of the data aggregation

patterns on the throughput obtained when performing a
collective I/O operation in a Lustre file system. To investigate
this issue, we performed a set of experiments on two large-scale
Lustre file systems at two different research facilities on the
TeraGrid[9]. The TeraGrid was developed with funding from
the National Science Foundation, and is the world’s largest open
facility for scientific research. It consists of eleven research
centers connected via a 40-gigabit per second backbone network.
The Lustre file systems used in this research were located at two
of the facilities on the TeraGrid: the National Center for
Supercomputing Applications (NCSA, located at the University
of Illinois at Urbana-Champaign) and Indiana University.

We used the Tungsten cluster at NCSA, which consisted of
2,560 Intel IA-32 Xeon 3.2 GHz processors divided into five
sub-clusters, each containing 256 dual-processor nodes. Each of
the sub-clusters had a 20-gigabit per second connection to the
OSTs via a common switch, where each OST was connected to
the switch via one gigabit Ethernet.

The Lustre file system on Tungsten was served by a total of
104 Object Storage Devices (OSTs), split over two mount
points. The Lustre partition used in these experiments consisted
of 32 OSTs. We used the ChaMPIon MPI implementation on
Tungsten, which is a proprietary implementation of the MPI
standard developed at MPI Software Technology.

At Indiana University, we used the Big Red cluster that
consisted of 768 IBM JS21 Blades, each with two dual-core
PowerPC 970 MP processors and 8 GB of memory. The
compute nodes were connected to Lustre through 24 Myricom
10 gigabit Ethernet cards. The Lustre file system (Data
Capacitor) is mounted on Big Red, and consists of 52 Dell
servers running Red Hat Enterprise Linux, 12 DataDirect
Networks S29550, and 30 DataDirect Networks 48 bay SATA
disk chassis, for a total capacity of 535 Terabytes.

The MPI implementation used on Big Red was MPICH,
which was developed at Argonne National Laboratory and
utilizes ROMIO for the I/O operations. There were 96 OSTs
on the Data Capacitor.

We varied both the number of processes participating in the
collective write operation and the data aggregation patterns. For

these experiments, we categorize such patterns based on the
number of OSTs with which each aggregator process
communicated. Thus, for example, the write pattern shown in
Figure 8 would be termed a 1-OST pattern, Figure 7 would be
categorized as a 2-OST pattern, and Figure 6 would be
categorized as the 4-OST pattern. We varied the write pattern
between 1-OST and 32-OST.

On Tungsten, there were a total of 54 OSTs available on the
partition to which we were assigned. We utilized 32 of these
OSTs to simplify the experimentation (that is, to more easily
modify the data aggregation patterns). We varied the number of
aggregator processes from 8 to 256. On Big Red, we were able
to obtain 104 nodes, and thus used 52 OSTs, and experimented
with 13, 26, 52, and 104 aggregator processes. The file was 8
Gigabytes on Tungsten and 13 GB on Big Red (again chosen to
simplify the experimentation). All of the tests used one
processor per node, because we found that the connections
between nodes and OSTs were quickly saturated, and very little
performance increase was gained by using multiple processors
per node for I/O.

In these experiments, we simulated two-phase I/O by
performing only the writes corresponding to the various
aggregation patterns under consideration. That is, the
appropriate data was assigned to each process without
performing data re-distribution. We believe this to be valid
based on the fact that the cost of writing to disk is orders of
magnitude greater than the cost of inter-processor
communication. The comparison with the existing MPI
implementations (ChaMPIon on Tungsten, and MPICH on Big
Red) was done by using a collective call to
MPI_File_write_at_all. However, the data was
distributed on the processes in a way that conformed to the
expected aggregation pattern, and thus no data re-distribution
was required in that case either. In all cases, the writes were
aligned on stripe and lock boundaries.

VI. EXPERIMENTAL RESULTS

The results of the experiments are shown in Figures 9 and 10.

First, consider the experimental data obtained from Big
Red/Data Capacitor. The two most striking results are that the
2-OST pattern consistently provided the best performance, and
the 16-OST pattern and MPI consistently provided the worst
performance. While the MPI results may have been affected by
some additional processing in the two-phase I/O operation, it
did not have to perform any data re-distribution. Thus we
assume that its poor performance is due primarily to its
aggregation patterns. This is supported by the fact that the 16-

OST pattern, which included no additional processing, also

Figure 9: Performance results from Big Red at Indiana University

performed quite poorly, especially compared to the other OST
aggregation patterns.

It is also interesting to consider the results obtained when
there were 104 aggregator processes. In particular, in the 16-
OST pattern, each aggregator process performed 16 individual
I/O requests, each of which wrote 16 MB. In the 2-OST pattern,
each aggregator performed 128 separate I/O requests, each of
which wrote 2 MB.

Figure 10: Performance results from Tungsten at NCSA

Now consider the results obtained on Tungsten shown in

Figure 10. As can be seen, the best performance by far was
obtained using the 1-OST aggregation pattern with 32
aggregator processes. It can also be observed that MPI provided
the worst performance in this configuration. As the number of

aggregator processes was increased beyond 32, I/O
performance began to degrade. With 64 processes, the best
performance was observed with the 2-OST pattern. The
difference in performance between the 2-OST pattern and other
patterns was still significant, but was not of the magnitude of
that observed with the 1-OST pattern. When the number of
aggregators was increased to 128, other aggregation patterns
began to provide the best performance. However, overall
performance was significantly lower than that obtained with 32
aggregator processes, and the differences in performance
became much less pronounced. When the number of aggregator
processes was increased to 256, I/O performance plummeted,
and there was very little difference in the performance obtained
from any configuration.

We believe the results obtained with up to 64 aggregation
processes are the most reliable results. This is because of the
way the scheduler assigns nodes to requesting jobs. In particular,
it tends to allocate the vast majority of nodes within the same
sub-cluster. As noted above, each such sub-cluster only had a
single 20-bit gigabit connection to the OSTs. Thus once the
number of aggregator processes increased beyond 64,
contention for this 20-gigabit connection began to dominate the
cost of performing I/O.

B. Discussion

In these experiments, all MPI process communicated with all
OSTs. This was because each MPI process wrote a contiguous
block of data to disk, the stripe size was 1 MB, the file was
striped across all OSTs, and the size of the blocks was never less
than the number of OSTs. The fact that MPI-IO, and the 16-
and 32-OST write patterns, consistently provided the worst
performance strongly suggests that it was, in fact, the overhead
of multiple processes talking to multiple OSTs that was
responsible for the observed poor performance. This was
further supported by the fact that the 1- and 2-OST patterns
provided the best performance on Tungston and Big Red
respectively. Thus while it is not currently clear as to whether
the 1- or 2-OST pattern should be used (we believe this is an
architectural issue, where the more powerful networking
infrastructure of Big Red enabled each process to communicate
with more than one OST), it seems clear that communicating
with a small number of OSTs is better than communicating with
a large number of OSTs.

These results also lend strong support to other studies of
Lustre showing that maximum performance is obtained when
individual processes write to independent files concurrently [4,
26]. Further, it helps explain the commonly held belief of (at
least some) Lustre developers that parallel I/O is not necessary
in a Lustre environment, and does little to improve performance
[2]. While we do not subscribe to this view, we now at least
understand its origins.

It is our belief that MPI-IO can provide excellent, and
perhaps optimal, performance in a Lustre environment. This is
because it offers considerable support for collective operations
and provides tremendous flexibility. For example, the results
obtained on Big Red show that a 2-OST pattern provides the
best performance. Such a pattern is not possible without a
parallel I/O API and supporting infrastructure. Other studies

may show that the optimal pattern is, to some extent,
architecture dependent. MPI-IO has the flexibility to adapt to
such findings.

However, these results do indicate that it is worthwhile to go
down a (somewhat) different path in developing a high-
performance ADIO driver for Lustre. While it is certainly critical
to ensure that all I/O requests are properly aligned with the data
striping patterns, these results show that doing so is not
sufficient to significantly improve the performance of MPI-IO.
We base this conclusion on the fact that every experiment we
performed, regardless of the aggregation pattern, was aligned
with the striping patterns.

Perhaps the weakest part of this study was the size of the
clusters on which we were able to experiment. The TeraGrid
systems on which this study was performed are very heavily used,
and it is extremely difficult to grab a large number of processors
for an extended period of time. However, we have had some
success in obtaining dedicated time for a short duration, and will
strive to perform similar studies with significantly larger Lustre
systems.

VII. RELATED WORK

The most closely related work is from Yu et al. [26], who

implemented the MPI-IO collective write operations using the
Lustre file-join mechanism. In this approach, the I/O processes
write separate, independent files in parallel, and then merge
these files using the Lustre file-join mechanism. They showed
that this approach significantly improved the performance of the
collective write operation, but that the reading of a previously
joined file resulted in low I/O performance. As noted by the
authors, correcting this poor performance will require an
optimization of the way a joined file’s extent attributes are
managed. The authors also provide an excellent performance
study of MPI-IO on Lustre.

Our approach does not require multiple independent writes
to separate files, but does limit the number of Object Storage
Targets (OST) with which a given process communicates. This
maintains many of the advantages of writing to multiple
independent files separately, but does not require the joining of
such files. The performance analysis presented in this paper
complements and extends the analysis performed by Yu et al.

Larkin and Fahey [15] provide an excellent analysis of
Lustre’s performance on the Cray XT3/XT4, and, based on
such analysis, provide some guidelines to maximize I/O
performance on this platform. They observed, for example, that
to achieve peak performance it is necessary to use large buffer
sizes, to have at least as many IO processes as OSTs, and, that at
very large scale (i.e., thousands of clients), only a subset of the
processes should perform I/O. While our research reaches some
of the same conclusions on different architectural platforms,
there are two primary distinctions. First, our research is focused
on understanding of the poor performance of MPI-IO (or, more
particularly, ROMIO) in a Lustre environment, and on
implementing a new ADIO driver for object-based file systems
such as Lustre. Second, our research is investigating both
contiguous and non-contiguous access patterns while this related
work focuses on contiguous access patterns only.

In [18], it was shown that aligning the data to be written with
the basic striping pattern improves performance. They also
showed that it was important to align on lock boundaries. This is
consistent with our analysis, although we expand the scope of
the analysis significantly to study the algorithms used by MPI-IO
(ROMIO) and determine (at least some of) the reasons for sub-
optimal performance. We also show how to modify ROMIO’s
collective I/O algorithms to achieve significantly improved
performance.

There has also been a significant research effort focused on
various techniques to enhance the performance of MPI-IO.
DAChe [14] is a user-space client side cache that was shown to
improve the performance of ROMIO on both Lustre and GPFS
[14]. Active Buffering [16] has also been shown to improve the
performance of parallel write operations using local buffering
and performing the I/O in the background. In [19], an object-
based caching system is shown to improve the performance of
ROMIO on the FLASH I/O benchmark [5]. There has also
been significant research related to improving the performance
of non-contiguous I/O requests in ROMIO [24], independent
writes [17], and workarounds to the POSIX API (e.g., data
sieving [22], two-phase I/O [23]). Our research is similarly
focused on improving the performance of ROMIO in a
particular file system environment. We show that many of these
techniques, which provide significant improvement in other file
system environments, do not perform well in an object-based
environment such as Lustre. Thus this research is focused on
identifying the current approaches that do not work, explaining
the reason for poor performance, and showing approaches to
solving the performance issues.

VIII. CONCLUSIONS AND FUTURE RESEARCH

This research was motivated by the fact that MPI-IO

performs poorly in Lustre file systems, and the reasons for such
performance have been largely unknown. We hypothesized that
the problem was related to the high overhead associated with
writing large, contiguous blocks of data to the file system, which
can require the multiplexing of many concurrent communication
channels. We devised a series of experiments to test our
hypothesis, and, based on the results, believe that this provides a
very plausible explanation.

Based on these results, we believe it is worthwhile to further
explore these ideas, and to develop collective I/O algorithms
that take such overhead costs into account when determining
the most appropriate data aggregation patterns. Our longer-term
goal is to incorporate such algorithms into an ADIO driver that
is optimised for Lustre file systems.

The results presented in this paper are limited by the relatively
small size of the systems on which the experimental studies were
conducted. Thus another focus of future research is to obtain
access to larger systems for longer periods of time. Also,
additional performance studies of Lustre itself need to be
undertaken to develop a better understanding of the factors
relating to the high overhead costs of communicating with
multiple OSTs. Network contention and lock protocol
processing are two likely causes, but there may be other
contributing factors that not currently known. Finally, we are
working to develop a methodology for determining the

particular OST pattern that would provide the best performance
for a given architecture.

REFERENCES

[1]. Cluster File Systems, Inc. http://www.clustrefs.com

[2]. Frequently Asked Questions. http://www.lustre.org

[3]. I/O Performance Project

http://wiki.lustre.org/index.php?title=IOPerformanceProject

[4]. Lustre: scalable, secure, robust, highly-available cluster file system.

An offshoot of AFS, CODA, and Ext2. www.lustre.org/

[5]. M. Zingale. FLASH I/O Benchmark Routine - Parallel HDF5,

March 2001.

http://flash.uchicago.edu/~zingale/flash_benchmark_io

[6]. MPI-2: Extensions to the Message-Passing Interface. Message

Passing Interface Forum http://www.mpi-forum.org/docs/mpi-20-

html/mpi2-report.html

[7]. MPICH2 Home Page. http://www.mcs.anl.gov/mpi/mpich

[8]. The Panasas Home Page. http://www.panasas.com

[9]. The Teragrid Project http://www.teragrid.org

[10]. Avery Ching, Choudhary, A., Coloma, K., Liao, W.-k., Ross, R.

and Gropp, W., Noncontiguous I/O Accesses through MPI-IO. In

the Proceedings of the Third International Symposium on Cluster

Computing and the Grid (CCGrid), (2002), 104-111.

[11]. Avery Ching, Choudhary, A., Liao, W.-k., Ross, R. and Gropp, W.,

Efficient Structured Access in Parallel File Systems. In the

Proceedings of the IEEE International Conference on Cluster

Computing, (2003), 326-335.

[12]. Bramm, P.J. The Lustre Storage Architecture

[13]. Isaila, F. and Tichy, W.F., View I/O: improving the performance

of non-contiguous I/O. In the Proceedings of the IEEE Cluster

Computing Conference, (Hong Kong).

[14]. Kenin Coloma, Alok Choudhary, Wei-keng Liao, Lee Ward and .,

S.T., DAChe: Direct Access Cache System for Parallel I/O. In the

Proceedings of the T the Proceedings of the 2005 International

Supercomputer Conference.

[15]. Larkin, J. and Fahey, M. Guidelines for Efficient Parallel I/O on

the Cray XT3/XT4 CUG 2007, 2007.

[16]. Lee, J., Ma, X., Ross, R., Thakur, R. and Winslett, M., RFS:

Efficient and Flexible Remote File Access for MPI-IO. In the

Proceedings of the The 2004 IEEE International Conference on

Cluster Computing, (2004).

[17]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A. and Kandemir,
M., Iproving MPI Independent Write Performance Using A Two-
Stage Write-Behind Buffering Method. . In the Proceedings of the

Next Generation Software (NGS) Workshop, (2007).

[18]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A. and Ward, L.,
An Implementation and Evaluation of Client-Side File Caching for
MPI-IO. In the Proceedings of the International Parallel and

Distried Processing Symposium (IPDPS '07), (2007).

[19]. Logan, J. and Dickens, P., Using Object Based Files for High

Performance Parallel I/O In the Proceedings of the To Appear:
IEEE International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications.,
(Dortmund, Germany, 2007).

[20]. Schmuck, F. and Haskin, R., GPFS: A shared-disk file system for

large computing clusters. . In the Proceedings of the Conference

on File and Storage Technologies, (IBM Almaden Research

Center, San Jose, California).

[21]. Thakur, R., Gropp, W. and Lusk, E., An Abstract-Device Interface

for Implementing Portable Parallel-I/O Interfaces. In the

Proceedings of the Proc. of the 6th Symposium on the Frontiers of

Massively Parallel Computation.

[22]. Thakur, R., Gropp, W. and Lusk, E., Data Sieving and Collective

I/O in ROMIO. In the Proceedings of the Proc. of the 7th

Symposium on the Frontiers of Massively Parallel Computation,

182-189.

[23]. Thakur, R., Gropp, W. and Lusk, E., On Implementing MPI-IO

Portably and with High Performance. In the Proceedings of the

Proc. of the Sixth Workshop on I/O in Parallel and Distributed

Systems, 23-32.

[24]. Thakur, R., Gropp, W. and Lusk, E. Optimizing Noncontiguous

Accesses in MPI-IO. Parallel Computing, 28 (1). 83-105. January,

2002.

[25]. Thakur, R., Ross, R. and Gropp, W. Users Guide for ROMIO: A

High-Performance, Portable MPI-IO Implementation, Technical

Memorandum ANL/MCS-TM-234, Mathematics and Computer

Science Division, Argonne National Laboratory, Revised May

2004.

[26]. Yu, W., Vetter, J., Canon, R.S. and Jiang, S., Exploiting Lustre

File Joining for Effective Collective I/O In the Proceedings of the

Seventh IEEE International Symposium on Cluster Computing and

the Grid (CCGrid '07), (2007).

