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Abstract - Our research has been investigating a new 

approach to parallel I/O based on what we term objects. The 

premise of this research is that the primary obstacle to 

scalable I/O is the legacy view of a file as a linear sequence of 

bytes. The problem is that applications rarely access their 

data in a way that conforms to this data model, using instead 

what may be termed an object model, where each process 

accesses a (perhaps disjoint) collection of objects. We have 

developed an object-based caching system that provides an 

interface between MPI applications and a more powerful 

object file model, and have demonstrated significant 

performance gains based on this new approach. In this 

paper, we further explore the advantages that can be gained 

from using object-based I/O. In particular, we demonstrate 

that parallel I/O based on objects (termed parallel object 

I/O) can be dynamically remapped. That is, one application 

can output an object stream based on one object set, this can 

be captured and translated into a different object set that is 

more appropriate for another application. We demonstrate 

how such remapping can be accomplished, and provide an 

example application showing that using this technique can 

significantly improve I/O performance.  

 

Keywords - Parallel I/O; High Performance Computing; 

Data-intensive applications; MPI-IO. 

I. INTRODUCTION 

Large-scale computing clusters are increasingly being 

used to execute large-scale, data-intensive applications in 

several disciplines including, for example, high-resolution 

simulation of natural phenomenon, large-scale climate 

modeling, earthquake modeling, visualization/animation 

of scientific data, and distributed collaboration. The 

execution of such applications is supported by state-of-

the-art file systems (e.g., Lustre [2], GPFS [18]) that 

provide tremendous aggregate storage capacity, and by 

parallel I/O interfaces that can interact with such file 

systems to optimize access to the underlying store. The 

most widely used parallel I/O interface is MPI-IO [4], 

which provides to the application a rich API that can be 

used to express complex I/O access patterns, and which 

provides to the underlying implementation many 

opportunities for important I/O optimizations. The 

problem, however, is that even with all of this hardware 

and software support, the I/O requirements of data-

intensive applications are still straining the I/O capabilities 

of even the largest, most powerful file systems in use 

today. Thus new approaches are needed to support the 

execution of current and next-generation data-intensive 

applications.  

There are many factors that make this problem, 

generally termed the scalable I/O problem, so challenging. 

The most often cited difficulties include the I/O access 

patterns exhibited by scientific applications (e.g., non-

contiguous I/O [6, 7, 11]), poor file system support for 

parallel I/O optimizations [15, 16], strict file consistency 

semantics [12], and the latency of accessing I/O devices 

across a network. However, we believe that a more 

fundamental problem, whose solution would help alleviate 

all of these challenges, is the legacy view of a file as a 

linear sequence of bytes. The problem is that application 

processes rarely access data in a way that matches this file 

model, and a large component of the scalability problem is 

the cost of translating between the process data model and 

the file data model. In fact, the data model used by 

applications is more accurately defined as an object 

model, where each process maintains a collection of 

(perhaps) unrelated objects. We believe that aligning these 

different data models will significantly enhance the 

performance of parallel I/O for large-scale, data-intensive 

applications.  

This research is attacking the scalable I/O problem by 

developing the infrastructure to merge the power and 

flexibility of the MPI-IO parallel I/O interface with a more 

powerful object-based file model. Toward this end, we 

have developed an object-based caching system that 

serves as an interface between MPI applications and 

object-based files. The object-based cache is based on 

MPI file views [3], or, more precisely, the intersections of 

such views. These intersections, which we term objects, 

identify all of the file regions within which conflicting 

accesses are possible and (by extension) those regions for 

which there can be no conflicts (termed shared-objects 

and private-objects respectively). This information can be 

used by the runtime system to significantly increase the 

parallelism of file accesses and decrease the cost of 

enforcing strict file consistency semantics and global 

cache coherence.  

Previous research has shown that using the object-based 

caching system can lead to a significant increase in 

performance compared to native MPI-IO [13] for the 

FLASH-IO parallel I/O benchmark [1]. However, we did 

not at that time fully support the object file model. In 

particular, an object file created by one application could 

only be re-opened by another application with the same 

object set. 



This issue can be thought of within the context of a 

producer/consumer problem. One application produces a 

set of objects (e.g., creates an object file) that another 

application requires (the consumer). However, the 

consumer requires a different object set. For example, a 

long running application may checkpoint its state 

information as a set of objects, terminate unexpectedly, 

and subsequently be restarted with a different number of 

processes. Another example would be when an application 

changes the file views upon which the current object set is 

based. More generally, an application’s object set reflects 

the current file access patterns, and when access patterns 

change, new objects must be created that reflect such 

change. We refer to this as the dynamic remapping 

problem.  

In this paper, we describe our approach to the dynamic 

remapping problem. It is based on the construction and 

utilization of interval trees, which store information about 

the current object set. Logically, what we refer to as a 

translator is placed between the producer and consumer 

applications, which utilizes the information stored in an 

interval tree to perform this translation.  

During the course of this research it has become 

apparent that the ability to perform the dynamic 

remapping of object sets can provide the foundation for 

other important capabilities. For example, one emerging 

characteristic of next-generation scientific applications is 

their ability to adapt their behavior in response to changes 

in resource availability [10]. While there has been 

significant research investigating the remapping of the 

computational components of an application [14, 17], the 

issue of remapping its I/O component has been largely 

ignored. Dynamic remapping can also improve the 

performance characteristics of applications even when it 

would otherwise not be necessary to perform such 

remapping. This could occur, for example, when a 

producing application remaps the object set as it writes it 

to an object file such that it optimizes the performance of 

the consuming application.  

The primary contribution of this paper is the 

development of a technique to perform dynamic 

remapping of parallel I/O and a demonstration of the 

performance enhancement that is available using this 

technique.  

II. BACKGROUND 

MPI-IO is the IO component of the MPI standard [4] 

that was designed to provide MPI applications with 

portable, high performance parallel I/O. It provides a rich 

and flexible API that provides to an application the ability 

to express complex parallel I/O access patterns in a single 

I/O request, and provides to the underlying 

implementation important opportunities to optimize access 

to the underlying file system. It is generally agreed that 

the most widely used implementation of the MPI-IO 

standard is ROMIO [20-22, 24], which was developed at 

Argonne National Laboratory and is included in the 

MPICH2 [5] distribution of the MPI standard. ROMIO 

provides key optimizations for enhanced performance 

(e.g., two-phase I/O [9, 21]and data sieving[21-23]), and 

is implemented on a wide range of parallel architectures 

and file systems. The portability of ROMIO stems from an 

internal layer termed ADIO [22] (an Abstract Device 

Interface for parallel I/O) upon which ROMIO 

implements the MPI-IO interface. ADIO implements the 

file system dependent features, and is thus implemented 

separately for each file system. 

 

A. MPI File Views 

An important feature of MPI-IO is the file view [3], 

which maps the relationship between the regions of a file 

that a process will access and the way those regions are 

laid out on disk. A process cannot “see” or access any file 

regions that are not in its file view, and the file view thus 

essentially maps a contiguous window onto the (perhaps) 

non-contiguous file regions in which the process will 

operate. If its data is stored on disk as it is defined in the 

file view, only a single I/O operation is required to move 

the data to and from the disk. However, if the data is 

stored non-contiguously on disk, multiple I/O operations 

are required. 

 

Figure 1: The view window 

 
Figure 1 depicts a file region in which two processes 

are operating, and the data for each is laid out non-

contiguously on disk. The file view for Process P0 is 

shown, which creates a contiguous “view window” of the 

four data blocks it will access. Thus, the data model that 

P0 is using is a contiguous file region, which conflicts 

with the file data model. Because of these conflicting 

views, it will require four separate I/O operations to 

read/write its data from/to the disk. If it were stored on 

disk as it is used by P0, such data accesses would require a 
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single I/O operation.  

File views contain valuable information about file 

access patterns, and, when aggregated, show exactly those 

file regions in which contention is possible (there is 

overlap between file views), and, by extension, those 

regions for which contention is not possible.  

 

B. Objects 

Objects represent non-overlapping file regions that can 

be either private to a process (i.e., no other process will 

operate in that particular region), or shared by a set of 

processes. This distinction between shared objects and 

private objects has two very important ramifications: First, 

only shared objects must be locked, and such objects 

represent the minimum overlap of shared data. This 

completely eliminates false sharing and provides the 

maximum possible concurrency for data access. Second, 

such information can simplify the locking mechanism and 

significantly increase its performance. This is because 

each object manager knows exactly which processes can 

access its objects, and acts as a centralized lock manager 

for those processes. Thus contention for write locks, 

which can significantly reduce performance, is limited to 

the subset of processes that can access the objects being 

controlled by a given manager. In essence, this creates a 

set of centralized lock managers that are operating in 

parallel. 

 

C. Object Based Caching System 

The object-based caching system functions in the same 

manner as traditional file system caches except that it is 

objects rather than disk blocks that are cached. It takes an 

I/O request from an application process that is expressed 

in terms of a linear sequence of bytes and converts it to an 

equivalent request expressed in terms of objects. It then 

carries out the request either on its own (the object is 

private) or in collaboration with other object managers 

(the object is shared). 

All of the processes that share a given file participate in 

the object cache for that file. The cache buffer consists of 

memory from the participating processes plus any 

available local disk space. The cache objects are created 

when a shared file is opened, and the objects and cache for 

that file are torn down when the file is closed. There is a 

local object manager for each process participating in the 

cache. Once the objects are created, they are distributed 

among the managers based on a cost model of assigning a 

given object to a given process. The local manager 

controls the meta-data for its objects and performs any 

object locking necessary to maintain global cache 

coherence. Once the objects are created, all subsequent 

I/O operations are carried out in the cache (except in the 

case of a sync() or close operation).  

Metadata and locking responsibilities for a given object 

are maintained by (exactly) one of the object managers 

sharing the object.  When a process wants to write into a 

shared object, the request is trapped by its local manager 

and forwarded to the appropriate lock manager. Once the 

lock has been acquired, the object can be written into the 

requesting processes’ local cache, or the object can be 

modified and the updated object can be sent to the object 

manager that owns the object. In the first case, the write is 

performed and the writing process becomes the new 

manager for that object. In the latter case, ownership of 

the object is not changed. We are currently investigating 

the trade-offs associated with each approach.  

III. DYNAMIC REMAPPING OF OBJECT BASED I/O 

Given an understanding of the basic system components 

we now focus on the dynamic remapping of object-based 

I/O. We first show how objects are created, followed by a 

discussion of how they are represented at runtime via 

interval trees. We then provide an example demonstrating 

how dynamic remapping can be performed.  

 

D. Object Creation 

 

Think of a file as represented by an integer line that 

extends from 0 to n – 1, where n is the number of bytes in 

the file. Given this representation of a file, a file view can 

be thought of as a set of intervals on this integer line, 

where each interval represents the endpoints of a file 

region in which the owning process will operate. These 

endpoints are obtained from the file views, and divide the 

integer line into a set of partitions termed elementary 

intervals [19]. Each file view can contain multiple 

intervals, and as more intervals are placed on the integer 

line, more elementary intervals are created. Once all of the 

intervals (of all file views) have been added to the line, 

each of the resulting elementary intervals corresponds to 

an object.  

Figure 2 depicts object creation using this technique. It 

shows the file views of three processes, an integer line 

representing an 80-unit file, and how the endpoints 

associated with the file views cut the line. For example, 

the first interval associated with the file view of process 

P0 partitions the line into two segments, 0 -14 and 15 – 

69. When the first interval associated with process P1 is 

added to the line, it creates three new partitions: 10 – 14, 

15 – 25, and 26 – 29. The other partitions are similarly 

created, and an object is created for each resulting 

elementary interval.  

As can be seen, each shared object encompasses exactly 

the overlapping file region within which contention can 

occur. It is also evident that objects are defined such that 

they cannot overlap.   

 



 

Figure 2: Object Creation. As intervals are added to the integer 

line new elementary elements are created.  

 

E. Interval Search Trees 

 

The advantage of creating objects in this manner is that 

it provides the basis for building an efficient search tree 

that can store and retrieve information about the object 

set. Because objects defined in this manner cannot 

overlap, it is possible to build a simple binary search tree, 

organized by object intervals, which can provide the 

needed functionality. Assuming that the tree is kept 

balanced, this approach would provide O(log n + r) 

lookup time, where n is the number of intervals (objects) 

stored in the tree, and r is the number of objects in the 

search result [8].  

We needed slightly more functionality than that 

provided by a simple binary tree, and use instead an 

interval tree that stores the position on the integer line at 

each node, along with all objects containing the interval. 

Assuming the interval tree is kept balanced, it would have 

the same efficiency characteristics as those of a simple 

binary tree. 

One of the most important issues with respect to binary 

trees is the method used to keep it balanced. A simple 

strategy for balancing is to choose a position for the root 

node that splits the integer line in half and recursively 

splits in half all of the sub-trees that are added. This would 

continue until all of the elementary intervals had been 

added. This simple strategy would result in a fairly 

balanced tree in cases where the file objects are evenly 

distributed, but has the potential for O(n) search 

performance in the worst case. There are many other 

options that can also be considered, ranging from 

probabilistic techniques such as random ordering of 

insertions, to the use of a self balancing tree such as a red-

black tree or an AVL tree [8]. We are currently 

investigating the performance of these and other 

techniques.  

 

 

 

F. Interval Tree Example 
 

Figure 3 shows the interval tree that would be constructed 

to store the objects created in Figure 2. The tree nodes are 

created as described above, splitting the difference at each 

successive level of the tree. For example, the root of the 

tree divides the range of the file (0 – 79) in half, with the 

midpoint 39 being stored in the node. The root’s left child 

divides the range between the beginning of the file and the 

position of the root node (0 – 39) in half, thus it has 

position 19.  

 

 

Figure 3: Interval Tree Example 

Now consider how the interval tree would be searched 

to find all of the objects that contain the interval {18,35}. 

Starting at the root, the search interval is compared with 

the node’s position. There are three possible outcomes 

from this comparison: the search range is entirely to the 

left of the node’s position, the search range is entirely to 

the right of the node’s position, or the search range 

contains the node’s position. Since the root node’s 

position is entirely to the right of the search interval, the 

right sub-tree may be safely pruned from the search as it 

cannot contain any objects in the search range. Any 

objects stored at the root node (in this case, only O4) must 

be checked, as they may or may not intersect the search 

area. Since O4 is found to overlap the search interval it is 

added to the result, and the left sub-tree is searched 

recursively.  

The search of the root’s left sub-tree starts at the node 

with position 19. Since position 19 falls within the search 

interval, the object at that node, O2, must overlap the 

search interval (they have at least byte 19 in common), so 

it may be immediately added to the result. Since the 

node’s position falls within the search interval, both left 

and right sub-trees must be searched recursively. The 

search moves to the node with position 9, which falls to 

the left of the search interval. O0 is checked and ignored, 

as it does not fall within the search interval. The node with 

position 14 is searched recursively, and O1 is also ignored. 

Finally, the node with position 29 is checked. Since 29 

falls within the search interval, O3 is immediately added to 
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the result, completing the search. 

G. Using Interval Trees for Dynamic Remapping 

Logically, the dynamic remapping of object streams can 

be thought of as consisting of three components: a 

producer of objects, a consumer with a different object 

structure on the same file, and a translator that sits 

between the two. The translator is a distributed application 

that can be co-resident with either application (assuming 

multiple cores per node), or can reside on its own set of 

processors. There is no requirement that the translator has 

as the same number of processors as either application, 

although it simplifies the discussion to assume that there is 

a one-to-one mapping between an application process and 

a translator process. Each translator process is assigned 

the responsibility of a subset of the objects required by the 

consuming application.  

In the general case, the translator would have an 

interval tree representing the object set of the producer 

and another representing the object set of the consumer. 

Assume a process of the producing application wrote an 

object to disk. This write would be trapped by the local 

cache manager and rerouted to the translator. For 

simplicity, assume the cache manager adds header 

information specifying the byte range of the object. When 

the translator receives the write request and the associated 

byte range, it searches the interval tree of the consumer 

application to determine the set of objects containing that 

interval. It would then determine the translator processes 

responsible for each of the returned objects, and send the 

file interval to each such process.  A simple example may 

help clarify these ideas. 

Consider the MPI-tile-reader benchmark that can be 

categorized as an example of the producer-consumer 

model. The producer application consists of a set of 

processes that generate a dense two-dimensional set of 

pixel data (tile-writers), and the consuming application 

consists of a set of processes that read the pixel data 

generated by the tile-writers and display the data on a tiled 

wallboard (tile-readers). The tiled wallboard consists of a 

set of individual monitors that together display the entire 

image. Adjacent monitors (in the horizontal and vertical 

directions) share a column of pixel data to help blend the 

individual components of the image into a smoother 

aggregate image.  

 

 

Figure 4: Each producer writes a single row. 

For clarity of presentation, assume there are three tile-

writers, four tile-readers, and a 60x3 two-dimensional grid 

of pixel data consisting of one byte per pixel. The object 

set for the three tile-writer processes is shown in Figure 4.   

The tiled wall display consists of four monitors with a 

one-to-one mapping of tile-readers to monitors. Figure 5 

depicts the object set required for the tile-readers.  Tile-

reader TR_0 is responsible for displaying bytes 0-19, 20-

39, 60-79, and 80-99 on monitor M_0. Tile-reader TR_1 

displays bytes 20-39, 40-59, 80-99, and 100-119 on 

monitor M_1. Thus bytes 20-39 and 80-99 are shared by 

TR_0 and TR_1 and displayed on their respective 

monitors. Similarly, bytes 60-79 and 80-99 are shared by 

TR_0 and TR_2, and displayed on the lower edge of 

monitor M_0 and the upper edge of monitor M_2. The 

object set associated with the tile-readers is also shown, 

and demonstrates how different applications can require 

different object sets on the same data.  

 
 

 

 

 

 

 

 

 

Figure 5. The tile-reader object set. 

 

Figure  shows the nine objects inserted into an interval 

tree that would be used in the transformation of the 

contiguous data written by the producer into the set of 

objects required by the consumer. 

 

Figure 6: Tile reader objects positioned in an interval tree. 

 

Figure  gives an overview of the translator as it 

mediates between a producer application running on three 

processes and a consumer application running on four 
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processes. The tile-writer’s object set, consisting of three 

individual contiguous rows is shown on the left, and the 

tile-reader’s object set is shown on the right. The 

translator processes receiving objects from the tile-writers 

determine where those objects fit into the tile-reader 

object set. The translator processes connected to the tile-

readers build the new object set and write the new objects 

to the appropriate file for the tile-readers.  

Each receiving translator process obtains an object from 

the corresponding process in the tile-writer application. 

That object’s interval is used to perform a search of the 

interval tree representing the tile-reader’s object set, 

which returns the set of objects that overlap that particular 

interval. For example, Object 0 of the tile-writer process 

extends from byte 0 to byte 59. When the interval 0-59 is 

searched, objects 0, 1, and 2 would be returned. The 

translator process would then send the object’s data to the 

appropriate processes that are constructing the new object 

set.  

 

Figure 7: The translator architecture. 

 

Finally, Figure  shows the layout of objects in the tile-

readers object file. Note that in this example the shared 

objects are replicated in the object file. This is because 

they are read-only objects and thus there is no concern 

about file consistency semantics. The advantage of this 

approach is that it allows a consumer process to read a 

single contiguous section of the file that contains all of the 

required data for that process, eliminating file contention 

and greatly increasing read performance. The 

disadvantage of this approach is that it requires more 

storage space. Thus the tradeoffs between more storage 

and better performance must be made on a case-by-case 

basis and are dependent upon the characteristics of the 

application.  

 

 

Figure 8: File layout after object transformation 

IV. EXPERIMENTAL DESIGN 

We wanted to determine the magnitude of any 

performance gains that might be achieved by performing 

dynamic remapping of object streams. To begin to study 

this issue, we implemented the MPI-tile-reader benchmark 

with realistic data sets. In particular, each tile (monitor) 

had a display size of 1920 (width) by 1650 (height) and 

thus displayed a total of 3,168,000 pixels. Each pixel was 

represented by 32 bits with 8 bits each for red, blue, green 

and alpha (transparency). The tiles overlapped by 280 

pixels in the x-direction and 150 pixels in the y-direction. 

We kept the number of monitors in the vertical and 

horizontal directions constant, and varied the dimension of 

the display between 2x2 and 10x10, thus varying the 

number of processors between 4 and 100.  

For each configuration (2x2, 3x3, etc.), an object-based 

file was created to correspond with the data layout that 

would be required by each of the tile-reader processes. 

The objects belong to a particular tile-reader process were 

contiguous in the file. As noted, shared objects were 

replicated in the file. 

The measurement of interest was the time required for 

the slowest process to read a single tile. We tested two 

strategies for reading. First, we left the tile-reader file as a 

linear sequence of bytes and used an unaltered version of 

MPI-IO (MPICH2 version 1.0.7) to read the file. Next, we 

used the same version of MPI-IO that was modified to 

support the object-based cache that read in the object-

based file. 

All experiments were conducted on Lonestar, a high-

performance cluster consisting of 1300 Dell PowerEdge 

1955 blades (nodes). Each node contains two Xeon Intel 

Duo-Core 64-bit processors running at 2.66 GHz and 8 

GB of DDR-2 memory. The nodes are connected by an 

InfiniBand interconnect using a fat tree topology. Lonestar 

is attached to a 68 TB Lustre file system comprised of 16 

Dell 1850 I/O data servers. 

V. RESULTS 

The results are shown in Figure 9, which shows the 

time required to read a single tile using each strategy. As 

can be seen, the performance of the tile-readers utilizing 

the cache and object-based files was significantly better 

than that obtained using the native MPI-IO. In fact, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of MPI-Tile-Reader benchmark as a 

function of the approach used to create and read the pixel data. 

Note that ROMIO is the implementation of MPI-IO in the 

MPICH2 distribution used in this research. 
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performance was improved by between a factor of two 

and a factor of six for this particular benchmark. The 

performance of MPI-IO is limited in this case because the 

data being read is not contiguous in the file thus requiring 

multiple I/O requests to read in the file. Our technique, 

however, keeps the objects contiguous in the file resulting 

in a single I/O request.  

VI. DISCUSSION 

These experiments were designed to get a handle on the 

magnitude of the performance gains made possible by 

remapping object data. These results represent the 

maximum gain in performance for this set of experiments 

because the translator was still under development at the 

time of this publication, and we thus created the object file 

manually to mirror how it would be created by the 

translator.  

VII. CONCLUSIONS 

In this paper, we have described our approach to 

performing object-based parallel I/O, and have 

demonstrated techniques by which dynamic remapping of 

object streams can be performed. We also showed that this 

technique is promising in its ability to improve I/O 

performance.  

However, while these results are quite encouraging, the 

implementation costs of the transformations will be the 

ultimate determinant of the success of this approach. 

Given that a simple tree-based algorithm can be used to 

create such transformations, it appears that it could be 

implemented quite efficiently. We will provide data on the 

efficiency of the translator in future work.  
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