
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

21-23 September 2009, Rende (Cosenza), Italy

Improving I/O Performance through the Dynamic Remapping of

Object Sets

Jeremy Logan
1
, Phillip Dickens

2

1
University of Maine, Orono, Maine, USA, jeremy.logan@maine.edu

2 University of Maine, Orono, Maine, USA, dickens@umcs.maine.edu

Abstract - Our research has been investigating a new

approach to parallel I/O based on what we term objects. The

premise of this research is that the primary obstacle to

scalable I/O is the legacy view of a file as a linear sequence of

bytes. The problem is that applications rarely access their

data in a way that conforms to this data model, using instead

what may be termed an object model, where each process

accesses a (perhaps disjoint) collection of objects. We have

developed an object-based caching system that provides an

interface between MPI applications and a more powerful

object file model, and have demonstrated significant

performance gains based on this new approach. In this

paper, we further explore the advantages that can be gained

from using object-based I/O. In particular, we demonstrate

that parallel I/O based on objects (termed parallel object

I/O) can be dynamically remapped. That is, one application

can output an object stream based on one object set, this can

be captured and translated into a different object set that is

more appropriate for another application. We demonstrate

how such remapping can be accomplished, and provide an

example application showing that using this technique can

significantly improve I/O performance.

Keywords - Parallel I/O; High Performance Computing;

Data-intensive applications; MPI-IO.

I. INTRODUCTION

Large-scale computing clusters are increasingly being

used to execute large-scale, data-intensive applications in

several disciplines including, for example, high-resolution

simulation of natural phenomenon, large-scale climate

modeling, earthquake modeling, visualization/animation

of scientific data, and distributed collaboration. The

execution of such applications is supported by state-of-

the-art file systems (e.g., Lustre [2], GPFS [18]) that

provide tremendous aggregate storage capacity, and by

parallel I/O interfaces that can interact with such file

systems to optimize access to the underlying store. The

most widely used parallel I/O interface is MPI-IO [4],

which provides to the application a rich API that can be

used to express complex I/O access patterns, and which

provides to the underlying implementation many

opportunities for important I/O optimizations. The

problem, however, is that even with all of this hardware

and software support, the I/O requirements of data-

intensive applications are still straining the I/O capabilities

of even the largest, most powerful file systems in use

today. Thus new approaches are needed to support the

execution of current and next-generation data-intensive

applications.

There are many factors that make this problem,

generally termed the scalable I/O problem, so challenging.

The most often cited difficulties include the I/O access

patterns exhibited by scientific applications (e.g., non-

contiguous I/O [6, 7, 11]), poor file system support for

parallel I/O optimizations [15, 16], strict file consistency

semantics [12], and the latency of accessing I/O devices

across a network. However, we believe that a more

fundamental problem, whose solution would help alleviate

all of these challenges, is the legacy view of a file as a

linear sequence of bytes. The problem is that application

processes rarely access data in a way that matches this file

model, and a large component of the scalability problem is

the cost of translating between the process data model and

the file data model. In fact, the data model used by

applications is more accurately defined as an object

model, where each process maintains a collection of

(perhaps) unrelated objects. We believe that aligning these

different data models will significantly enhance the

performance of parallel I/O for large-scale, data-intensive

applications.

This research is attacking the scalable I/O problem by

developing the infrastructure to merge the power and

flexibility of the MPI-IO parallel I/O interface with a more

powerful object-based file model. Toward this end, we

have developed an object-based caching system that

serves as an interface between MPI applications and

object-based files. The object-based cache is based on

MPI file views [3], or, more precisely, the intersections of

such views. These intersections, which we term objects,

identify all of the file regions within which conflicting

accesses are possible and (by extension) those regions for

which there can be no conflicts (termed shared-objects

and private-objects respectively). This information can be

used by the runtime system to significantly increase the

parallelism of file accesses and decrease the cost of

enforcing strict file consistency semantics and global

cache coherence.

Previous research has shown that using the object-based

caching system can lead to a significant increase in

performance compared to native MPI-IO [13] for the

FLASH-IO parallel I/O benchmark [1]. However, we did

not at that time fully support the object file model. In

particular, an object file created by one application could

only be re-opened by another application with the same

object set.

This issue can be thought of within the context of a

producer/consumer problem. One application produces a

set of objects (e.g., creates an object file) that another

application requires (the consumer). However, the

consumer requires a different object set. For example, a

long running application may checkpoint its state

information as a set of objects, terminate unexpectedly,

and subsequently be restarted with a different number of

processes. Another example would be when an application

changes the file views upon which the current object set is

based. More generally, an application’s object set reflects

the current file access patterns, and when access patterns

change, new objects must be created that reflect such

change. We refer to this as the dynamic remapping

problem.

In this paper, we describe our approach to the dynamic

remapping problem. It is based on the construction and

utilization of interval trees, which store information about

the current object set. Logically, what we refer to as a

translator is placed between the producer and consumer

applications, which utilizes the information stored in an

interval tree to perform this translation.

During the course of this research it has become

apparent that the ability to perform the dynamic

remapping of object sets can provide the foundation for

other important capabilities. For example, one emerging

characteristic of next-generation scientific applications is

their ability to adapt their behavior in response to changes

in resource availability [10]. While there has been

significant research investigating the remapping of the

computational components of an application [14, 17], the

issue of remapping its I/O component has been largely

ignored. Dynamic remapping can also improve the

performance characteristics of applications even when it

would otherwise not be necessary to perform such

remapping. This could occur, for example, when a

producing application remaps the object set as it writes it

to an object file such that it optimizes the performance of

the consuming application.

The primary contribution of this paper is the

development of a technique to perform dynamic

remapping of parallel I/O and a demonstration of the

performance enhancement that is available using this

technique.

II. BACKGROUND

MPI-IO is the IO component of the MPI standard [4]

that was designed to provide MPI applications with

portable, high performance parallel I/O. It provides a rich

and flexible API that provides to an application the ability

to express complex parallel I/O access patterns in a single

I/O request, and provides to the underlying

implementation important opportunities to optimize access

to the underlying file system. It is generally agreed that

the most widely used implementation of the MPI-IO

standard is ROMIO [20-22, 24], which was developed at

Argonne National Laboratory and is included in the

MPICH2 [5] distribution of the MPI standard. ROMIO

provides key optimizations for enhanced performance

(e.g., two-phase I/O [9, 21]and data sieving[21-23]), and

is implemented on a wide range of parallel architectures

and file systems. The portability of ROMIO stems from an

internal layer termed ADIO [22] (an Abstract Device

Interface for parallel I/O) upon which ROMIO

implements the MPI-IO interface. ADIO implements the

file system dependent features, and is thus implemented

separately for each file system.

A. MPI File Views

An important feature of MPI-IO is the file view [3],

which maps the relationship between the regions of a file

that a process will access and the way those regions are

laid out on disk. A process cannot “see” or access any file

regions that are not in its file view, and the file view thus

essentially maps a contiguous window onto the (perhaps)

non-contiguous file regions in which the process will

operate. If its data is stored on disk as it is defined in the

file view, only a single I/O operation is required to move

the data to and from the disk. However, if the data is

stored non-contiguously on disk, multiple I/O operations

are required.

Figure 1: The view window

Figure 1 depicts a file region in which two processes

are operating, and the data for each is laid out non-

contiguously on disk. The file view for Process P0 is

shown, which creates a contiguous “view window” of the

four data blocks it will access. Thus, the data model that

P0 is using is a contiguous file region, which conflicts

with the file data model. Because of these conflicting

views, it will require four separate I/O operations to

read/write its data from/to the disk. If it were stored on

disk as it is used by P0, such data accesses would require a

 0 1 2 3 4 5 6 7

7

Contiguous “view window” in memory

Non-contiguous File Regions on Disk

P0 P1 P0 P1 P0 P1 P0 P1

View Window

File

single I/O operation.

File views contain valuable information about file

access patterns, and, when aggregated, show exactly those

file regions in which contention is possible (there is

overlap between file views), and, by extension, those

regions for which contention is not possible.

B. Objects

Objects represent non-overlapping file regions that can

be either private to a process (i.e., no other process will

operate in that particular region), or shared by a set of

processes. This distinction between shared objects and

private objects has two very important ramifications: First,

only shared objects must be locked, and such objects

represent the minimum overlap of shared data. This

completely eliminates false sharing and provides the

maximum possible concurrency for data access. Second,

such information can simplify the locking mechanism and

significantly increase its performance. This is because

each object manager knows exactly which processes can

access its objects, and acts as a centralized lock manager

for those processes. Thus contention for write locks,

which can significantly reduce performance, is limited to

the subset of processes that can access the objects being

controlled by a given manager. In essence, this creates a

set of centralized lock managers that are operating in

parallel.

C. Object Based Caching System

The object-based caching system functions in the same

manner as traditional file system caches except that it is

objects rather than disk blocks that are cached. It takes an

I/O request from an application process that is expressed

in terms of a linear sequence of bytes and converts it to an

equivalent request expressed in terms of objects. It then

carries out the request either on its own (the object is

private) or in collaboration with other object managers

(the object is shared).

All of the processes that share a given file participate in

the object cache for that file. The cache buffer consists of

memory from the participating processes plus any

available local disk space. The cache objects are created

when a shared file is opened, and the objects and cache for

that file are torn down when the file is closed. There is a

local object manager for each process participating in the

cache. Once the objects are created, they are distributed

among the managers based on a cost model of assigning a

given object to a given process. The local manager

controls the meta-data for its objects and performs any

object locking necessary to maintain global cache

coherence. Once the objects are created, all subsequent

I/O operations are carried out in the cache (except in the

case of a sync() or close operation).

Metadata and locking responsibilities for a given object

are maintained by (exactly) one of the object managers

sharing the object. When a process wants to write into a

shared object, the request is trapped by its local manager

and forwarded to the appropriate lock manager. Once the

lock has been acquired, the object can be written into the

requesting processes’ local cache, or the object can be

modified and the updated object can be sent to the object

manager that owns the object. In the first case, the write is

performed and the writing process becomes the new

manager for that object. In the latter case, ownership of

the object is not changed. We are currently investigating

the trade-offs associated with each approach.

III. DYNAMIC REMAPPING OF OBJECT BASED I/O

Given an understanding of the basic system components

we now focus on the dynamic remapping of object-based

I/O. We first show how objects are created, followed by a

discussion of how they are represented at runtime via

interval trees. We then provide an example demonstrating

how dynamic remapping can be performed.

D. Object Creation

Think of a file as represented by an integer line that

extends from 0 to n – 1, where n is the number of bytes in

the file. Given this representation of a file, a file view can

be thought of as a set of intervals on this integer line,

where each interval represents the endpoints of a file

region in which the owning process will operate. These

endpoints are obtained from the file views, and divide the

integer line into a set of partitions termed elementary

intervals [19]. Each file view can contain multiple

intervals, and as more intervals are placed on the integer

line, more elementary intervals are created. Once all of the

intervals (of all file views) have been added to the line,

each of the resulting elementary intervals corresponds to

an object.

Figure 2 depicts object creation using this technique. It

shows the file views of three processes, an integer line

representing an 80-unit file, and how the endpoints

associated with the file views cut the line. For example,

the first interval associated with the file view of process

P0 partitions the line into two segments, 0 -14 and 15 –

69. When the first interval associated with process P1 is

added to the line, it creates three new partitions: 10 – 14,

15 – 25, and 26 – 29. The other partitions are similarly

created, and an object is created for each resulting

elementary interval.

As can be seen, each shared object encompasses exactly

the overlapping file region within which contention can

occur. It is also evident that objects are defined such that

they cannot overlap.

Figure 2: Object Creation. As intervals are added to the integer

line new elementary elements are created.

E. Interval Search Trees

The advantage of creating objects in this manner is that

it provides the basis for building an efficient search tree

that can store and retrieve information about the object

set. Because objects defined in this manner cannot

overlap, it is possible to build a simple binary search tree,

organized by object intervals, which can provide the

needed functionality. Assuming that the tree is kept

balanced, this approach would provide O(log n + r)

lookup time, where n is the number of intervals (objects)

stored in the tree, and r is the number of objects in the

search result [8].

We needed slightly more functionality than that

provided by a simple binary tree, and use instead an

interval tree that stores the position on the integer line at

each node, along with all objects containing the interval.

Assuming the interval tree is kept balanced, it would have

the same efficiency characteristics as those of a simple

binary tree.

One of the most important issues with respect to binary

trees is the method used to keep it balanced. A simple

strategy for balancing is to choose a position for the root

node that splits the integer line in half and recursively

splits in half all of the sub-trees that are added. This would

continue until all of the elementary intervals had been

added. This simple strategy would result in a fairly

balanced tree in cases where the file objects are evenly

distributed, but has the potential for O(n) search

performance in the worst case. There are many other

options that can also be considered, ranging from

probabilistic techniques such as random ordering of

insertions, to the use of a self balancing tree such as a red-

black tree or an AVL tree [8]. We are currently

investigating the performance of these and other

techniques.

F. Interval Tree Example

Figure 3 shows the interval tree that would be constructed

to store the objects created in Figure 2. The tree nodes are

created as described above, splitting the difference at each

successive level of the tree. For example, the root of the

tree divides the range of the file (0 – 79) in half, with the

midpoint 39 being stored in the node. The root’s left child

divides the range between the beginning of the file and the

position of the root node (0 – 39) in half, thus it has

position 19.

Figure 3: Interval Tree Example

Now consider how the interval tree would be searched

to find all of the objects that contain the interval {18,35}.

Starting at the root, the search interval is compared with

the node’s position. There are three possible outcomes

from this comparison: the search range is entirely to the

left of the node’s position, the search range is entirely to

the right of the node’s position, or the search range

contains the node’s position. Since the root node’s

position is entirely to the right of the search interval, the

right sub-tree may be safely pruned from the search as it

cannot contain any objects in the search range. Any

objects stored at the root node (in this case, only O4) must

be checked, as they may or may not intersect the search

area. Since O4 is found to overlap the search interval it is

added to the result, and the left sub-tree is searched

recursively.

The search of the root’s left sub-tree starts at the node

with position 19. Since position 19 falls within the search

interval, the object at that node, O2, must overlap the

search interval (they have at least byte 19 in common), so

it may be immediately added to the result. Since the

node’s position falls within the search interval, both left

and right sub-trees must be searched recursively. The

search moves to the node with position 9, which falls to

the left of the search interval. O0 is checked and ignored,

as it does not fall within the search interval. The node with

position 14 is searched recursively, and O1 is also ignored.

Finally, the node with position 29 is checked. Since 29

falls within the search interval, O3 is immediately added to

 0 – 14 60 - 79

 10 – 29 50 - 65

 25 - 55

0 10 14 25 29 50 55 60 65 79

Position: 39

Objects: O4

Procs: 2

Position: 19
Objects: O2

Procs: 1

Position: 59
Objects: O6

Procs: 1

Position: 9

Objects: O0

Procs: 0

Position: 29

Objects: O3

Procs: 1,2

Position: 49

Objects: -

Procs: -

Position: 69

Objects: O8

Procs: 0

Position: 14
Objects: O1

Procs: 0,1

Position: 64
Objects: O7

Procs: 0,1

Position: 54
Objects: O5

Procs: 1,2

the result, completing the search.

G. Using Interval Trees for Dynamic Remapping

Logically, the dynamic remapping of object streams can

be thought of as consisting of three components: a

producer of objects, a consumer with a different object

structure on the same file, and a translator that sits

between the two. The translator is a distributed application

that can be co-resident with either application (assuming

multiple cores per node), or can reside on its own set of

processors. There is no requirement that the translator has

as the same number of processors as either application,

although it simplifies the discussion to assume that there is

a one-to-one mapping between an application process and

a translator process. Each translator process is assigned

the responsibility of a subset of the objects required by the

consuming application.

In the general case, the translator would have an

interval tree representing the object set of the producer

and another representing the object set of the consumer.

Assume a process of the producing application wrote an

object to disk. This write would be trapped by the local

cache manager and rerouted to the translator. For

simplicity, assume the cache manager adds header

information specifying the byte range of the object. When

the translator receives the write request and the associated

byte range, it searches the interval tree of the consumer

application to determine the set of objects containing that

interval. It would then determine the translator processes

responsible for each of the returned objects, and send the

file interval to each such process. A simple example may

help clarify these ideas.

Consider the MPI-tile-reader benchmark that can be

categorized as an example of the producer-consumer

model. The producer application consists of a set of

processes that generate a dense two-dimensional set of

pixel data (tile-writers), and the consuming application

consists of a set of processes that read the pixel data

generated by the tile-writers and display the data on a tiled

wallboard (tile-readers). The tiled wallboard consists of a

set of individual monitors that together display the entire

image. Adjacent monitors (in the horizontal and vertical

directions) share a column of pixel data to help blend the

individual components of the image into a smoother

aggregate image.

Figure 4: Each producer writes a single row.

For clarity of presentation, assume there are three tile-

writers, four tile-readers, and a 60x3 two-dimensional grid

of pixel data consisting of one byte per pixel. The object

set for the three tile-writer processes is shown in Figure 4.

The tiled wall display consists of four monitors with a

one-to-one mapping of tile-readers to monitors. Figure 5

depicts the object set required for the tile-readers. Tile-

reader TR_0 is responsible for displaying bytes 0-19, 20-

39, 60-79, and 80-99 on monitor M_0. Tile-reader TR_1

displays bytes 20-39, 40-59, 80-99, and 100-119 on

monitor M_1. Thus bytes 20-39 and 80-99 are shared by

TR_0 and TR_1 and displayed on their respective

monitors. Similarly, bytes 60-79 and 80-99 are shared by

TR_0 and TR_2, and displayed on the lower edge of

monitor M_0 and the upper edge of monitor M_2. The

object set associated with the tile-readers is also shown,

and demonstrates how different applications can require

different object sets on the same data.

Figure 5. The tile-reader object set.

Figure shows the nine objects inserted into an interval

tree that would be used in the transformation of the

contiguous data written by the producer into the set of

objects required by the consumer.

Figure 6: Tile reader objects positioned in an interval tree.

Figure gives an overview of the translator as it

mediates between a producer application running on three

processes and a consumer application running on four

Position: 89

Objects: O4

Procs: 0,1,2,3

Position: 44

Objects: O2

Procs: 1

Position: 134

Objects: O6

Procs: 2

Position: 22

Objects: O1

Procs: 0,1

Position: 66

Objects: O3

Procs: 0,2

Position: 111

Objects: O5

Procs: 1,3

Position: 156

Objects: O7

Procs: 2,3

Position: 11

Objects: O0

Procs: 0

Position: 172

Objects: O8

Procs: 3

Position: 54

Objects: O5

Procs: 1,2

P0

P1

P2

Bytes 0 – 59 O0

Bytes 60 – 119 O1

Bytes 120 – 179 O2

0 � 19 20 � 39 40 � 59

Object 0 Object 1 Object 2

60 � 79 80 � 99 100 � 119

Object 3 Object 4 Object 5

120 � 139 140 � 159 150 � 169

Object 6 Object 7 Object 8

processes. The tile-writer’s object set, consisting of three

individual contiguous rows is shown on the left, and the

tile-reader’s object set is shown on the right. The

translator processes receiving objects from the tile-writers

determine where those objects fit into the tile-reader

object set. The translator processes connected to the tile-

readers build the new object set and write the new objects

to the appropriate file for the tile-readers.

Each receiving translator process obtains an object from

the corresponding process in the tile-writer application.

That object’s interval is used to perform a search of the

interval tree representing the tile-reader’s object set,

which returns the set of objects that overlap that particular

interval. For example, Object 0 of the tile-writer process

extends from byte 0 to byte 59. When the interval 0-59 is

searched, objects 0, 1, and 2 would be returned. The

translator process would then send the object’s data to the

appropriate processes that are constructing the new object

set.

Figure 7: The translator architecture.

Finally, Figure shows the layout of objects in the tile-

readers object file. Note that in this example the shared

objects are replicated in the object file. This is because

they are read-only objects and thus there is no concern

about file consistency semantics. The advantage of this

approach is that it allows a consumer process to read a

single contiguous section of the file that contains all of the

required data for that process, eliminating file contention

and greatly increasing read performance. The

disadvantage of this approach is that it requires more

storage space. Thus the tradeoffs between more storage

and better performance must be made on a case-by-case

basis and are dependent upon the characteristics of the

application.

Figure 8: File layout after object transformation

IV. EXPERIMENTAL DESIGN

We wanted to determine the magnitude of any

performance gains that might be achieved by performing

dynamic remapping of object streams. To begin to study

this issue, we implemented the MPI-tile-reader benchmark

with realistic data sets. In particular, each tile (monitor)

had a display size of 1920 (width) by 1650 (height) and

thus displayed a total of 3,168,000 pixels. Each pixel was

represented by 32 bits with 8 bits each for red, blue, green

and alpha (transparency). The tiles overlapped by 280

pixels in the x-direction and 150 pixels in the y-direction.

We kept the number of monitors in the vertical and

horizontal directions constant, and varied the dimension of

the display between 2x2 and 10x10, thus varying the

number of processors between 4 and 100.

For each configuration (2x2, 3x3, etc.), an object-based

file was created to correspond with the data layout that

would be required by each of the tile-reader processes.

The objects belong to a particular tile-reader process were

contiguous in the file. As noted, shared objects were

replicated in the file.

The measurement of interest was the time required for

the slowest process to read a single tile. We tested two

strategies for reading. First, we left the tile-reader file as a

linear sequence of bytes and used an unaltered version of

MPI-IO (MPICH2 version 1.0.7) to read the file. Next, we

used the same version of MPI-IO that was modified to

support the object-based cache that read in the object-

based file.

All experiments were conducted on Lonestar, a high-

performance cluster consisting of 1300 Dell PowerEdge

1955 blades (nodes). Each node contains two Xeon Intel

Duo-Core 64-bit processors running at 2.66 GHz and 8

GB of DDR-2 memory. The nodes are connected by an

InfiniBand interconnect using a fat tree topology. Lonestar

is attached to a 68 TB Lustre file system comprised of 16

Dell 1850 I/O data servers.

V. RESULTS

The results are shown in Figure 9, which shows the

time required to read a single tile using each strategy. As

can be seen, the performance of the tile-readers utilizing

the cache and object-based files was significantly better

than that obtained using the native MPI-IO. In fact,

Figure 9. Comparison of MPI-Tile-Reader benchmark as a

function of the approach used to create and read the pixel data.

Note that ROMIO is the implementation of MPI-IO in the

MPICH2 distribution used in this research.

P0

P1

P2

C0

C1

C2

C3

T0

T1

T2

T3

T4

T5

T6

O0 O1 O2

O3 O4 O5

O6 O7 O8

Translator

O0 O1 O3 O4 O1 O2 O4 O5 O3 O4 O6 O7 O4 O5 O7 O8

C0 C1 C2 C3

performance was improved by between a factor of two

and a factor of six for this particular benchmark. The

performance of MPI-IO is limited in this case because the

data being read is not contiguous in the file thus requiring

multiple I/O requests to read in the file. Our technique,

however, keeps the objects contiguous in the file resulting

in a single I/O request.

VI. DISCUSSION

These experiments were designed to get a handle on the

magnitude of the performance gains made possible by

remapping object data. These results represent the

maximum gain in performance for this set of experiments

because the translator was still under development at the

time of this publication, and we thus created the object file

manually to mirror how it would be created by the

translator.

VII. CONCLUSIONS

In this paper, we have described our approach to

performing object-based parallel I/O, and have

demonstrated techniques by which dynamic remapping of

object streams can be performed. We also showed that this

technique is promising in its ability to improve I/O

performance.

However, while these results are quite encouraging, the

implementation costs of the transformations will be the

ultimate determinant of the success of this approach.

Given that a simple tree-based algorithm can be used to

create such transformations, it appears that it could be

implemented quite efficiently. We will provide data on the

efficiency of the translator in future work.

ACKNOWLEDGMENT

This material is based upon work supported by the

National Science Foundation under Grant No. 0702748.

REFERENCES

[1] FLASH I/O

 http://flash.uchicago.edu/~jbgallag/io_bench/
[2]. Cluster File Systems, Inc.

 http://www.clustrefs.com

[3]. MPI File Views
 http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-

2.0/node184.htm

[4]. MPI-2: Extensions to the Message-Passing Interface.

Message Passing Interface Forum

 http://www.mpi-forum.org/docs/mpi-20-html/mpi2-

report.html

[5]. MPICH2 Home Page

 http://www.mcs.anl.gov/mpi/mpich

[6]. Avery Ching, Choudhary, A., Coloma, K., Liao, W.-k., et al.,
Noncontiguous I/O Accesses through MPI-IO. In the

Proceedings of the Third International Symposium on Cluster

Computing and the Grid (CCGrid), (2002), 104-111.
[7]. Ching, A., Choudhary, A., Liao, W.-k., Ross, R., et al.,

Noncontiguous I/O through PVFS. In the Proceedings of the

2002 IEEE International Conference on Cluster Computing

(CLUSTER), (2002), 405-414.

[8]. Cormen, T., Leiserson, C., Rivest, R. and Stein, C.

Introduction to Algorithms, second edition. The MIT Press,

Cambridge, MA, 2001.

[9]. Dickens, P. and Thakur, R., A Performance Study of Two-
Phase I/O. In the Proceedings of the 4th International Euro-

Par Conference, (Southhampton, UK, 1998), 959-965.

[10]. Ghafoor, S., Haupt, T., Banicescu, I., Carino, R., et al., A
Resource Management System for Adaptive Parallel

Applications in Cluster Environments. In the Proceedings of

the The 6th International Conference on Linux Clusters: The

HPC Revolution, (Chapel Hill, North Carolina, 2005).

[11]. Isaila, F. and Tichy, W.F., View I/O: improving the

performance of non-contiguous I/O. In the Proceedings of the

IEEE Cluster Computing Conference, (Hong Kong).

[12]. Latham, R., Ross, R. and Thakur, R., The Impact of File

Systems on MPI-IO Scalability. In the Proceedings of the

11th European PVM/MPI Users' Group Meeting (Euro

PVM/MPI 2004), Recent Advances in Parallel Virtual

Machine and Message Passing Interface, (2004), Lecture
Notes in Computer Science, LNCS 3241, Springer, 87 - 96.

[13]. Logan, J. and Dickens, P., Using Object-Based Files for

High-Performance Parallel I/O. In the Proceedings of the
IEEE International Workshop on Intelligent Data Acquisition

and Advanced Computing Sysytems: Technology and

Applications. (Dortmund, Germany, 2007).

[14]. Neema, S. and Ledeczi, A. Constraint Guided Self-

Adaptation. Self-Adaptive Software: Applications, LNCS

2614. 39-51.

[15]. Ross, R., Latham, R., Gropp, W., Thakur, R., et al.,

Implementing MPI-IO Atomic Mode Without File System

Support. In the Proceedings of the 5th IEEE/ACM

International Symposium on Cluster Computing and the Grid

(CCGrid 2005).

[16]. Ross, R., Thakur, R. and Choudhary, A. Achievements and
Challenges for I/O in Computational Science. Journal of

Physics: Conference Series (SciDAC 2005), 16. 501 - 509.

2005.
[17]. Schmidt, D.C., Box, D.F. and Suda, T. ADAPTIVE: A

Dynamically Assembled Protocol Transformation,

Integration, and eValuation Environment. Journal of

Concurrency: Practice and Experience, 5 (4). 269-286. June

1993.

[18]. Schmuck, F. and Haskin, R., GPFS: A shared-disk file system

for large computing clusters. . In the Proceedings of the

Conference on File and Storage Technologies, (IBM

Almaden Research Center, San Jose, California).

[19]. Stewart, J. CSC378: Interval Trees

 www.dpg.toronto.edu/people/JamesStewart/378notes/22inter

vals
[20]. Thakur, R., Gropp, W. and Lusk, E., An Abstract-Device

Interface for Implementing Portable Parallel-I/O Interfaces. In

the Proceedings of the Proc. of the 6th Symposium on the

Frontiers of Massively Parallel Computation.

[21]. Thakur, R., Gropp, W. and Lusk, E., Data Sieving and

Collective I/O in ROMIO. In the Proceedings of the Proc. of

the 7th Symposium on the Frontiers of Massively Parallel

Computation, 182-189.

[22]. Thakur, R., Gropp, W. and Lusk, E., On Implementing MPI-

IO Portably and with High Performance. In the Proceedings

of the Proc. of the Sixth Workshop on I/O in Parallel and

Distributed Systems, 23-32.

[23]. Thakur, R., Gropp, W. and Lusk, E. Optimizing

Noncontiguous Accesses in MPI-IO. Parallel Computing, 28

(1). 83-105. January, 2002.
[24]. Thakur, R., Ross, R. and Gropp, W. Users Guide for ROMIO:

A High-Performance, Portable MPI-IO Implementation,

Technical Memorandum ANL/MCS-TM-234, Mathematics

and Computer Science Division, Argonne National

Laboratory, Revised May 2004.

