
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

6-8 September 2007, Dortmund, Germany

* This material is based upon work supported by the National Science Foundation under Grant No. 0702748.

Using Object Based Files for High Performance Parallel I/O
*

Jeremy Logan
1
, Phillip M. Dickens

2

1) Department of Computer Science, University of Maine, jeremy.logan@maine.edu

2) Department of Computer Science, University of Maine, dickens@umcs.maine.edu

Abstract – We contend that the scalable I/O problem in high

performance computing is largely due to the legacy view of a file

as a linear sequence of bytes. In this paper we introduce an

alternative to the traditional “flat file” that uses the information

contained in file views to partition a file into an optimal set of

objects, minimizing locking contention and simplifying the lock

management strategy. We illustrate the use of an object based

cache added to ROMIO to efficiently and transparently add

object-based file capabilities to MPI-IO. We analyze the

performance of our system using the FLASH-IO benchmark, and

demonstrate a substantial performance improvement over the

standard ROMIO implementation.

Keywords – parallel I/O, MPI-IO, object-based files, object-

based cache, I/O Performance, file view

I. INTRODUCTION

Large-scale computing clusters are increasingly being

used to execute large-scale, data-intensive applications in

several disciplines including, for example, high-resolution

simulation of natural phenomenon, large-scale climate

modeling, earthquake modeling, visualization/animation

of scientific data, and distributed collaboration. The

execution of such applications is supported by state-of-

the-art file systems (e.g., Lustre [1], GPFS [2], Panasas

[3]) that provide tremendous aggregate storage capacity,

and by parallel I/O interfaces that can interact with such

file systems to optimize access to the underlying store.

The most widely used parallel I/O interface is MPI-IO [4],

which provides to the application a rich API that can be

used to express complex I/O access patterns, and which

provides to the underlying implementation many

opportunities for important I/O optimizations. The

problem, however, is that even with all of this hardware

and software support, the I/O requirements of data-

intensive applications are still straining the I/O capabilities

of even the largest, most powerful file systems in use

today. Thus new approaches are needed to support the

execution of current and next-generation data-intensive

applications.

There are many factors that make this problem,

generally termed the scalable I/O problem, so challenging.

The most often cited difficulties include the I/O access

patterns exhibited by scientific applications (e.g., non-

contiguous I/O [5-7]) poor file system support for parallel

I/O optimizations [8], strict file consistency semantics [9],

and the latency of accessing I/O devices across a network.

However, we believe that a more fundamental problem,

whose solution would help alleviate all of these

challenges, is the legacy view of a file as a linear sequence

of bytes. The problem is that application processes rarely

access data in a way that matches this file model, and a

large component of the scalability problem is the cost of

translating between the process data model and the file

data model. In fact, the data model used by applications is

more accurately defined as an object model, where each

process maintains a collection of (perhaps) unrelated

objects. We believe that aligning these different data

models will significantly enhance the performance of

parallel I/O for large-scale, data-intensive applications.

This research is attacking the scalable I/O problem by

developing the infrastructure to merge the power and

flexibility of the MPI-IO parallel I/O interface with a more

powerful object-based file model. Toward this end, we are

developing an object-based caching system that serves as

an interface between MPI applications and object-based

files. The object-based cache is based on MPI file views

[10], or, more precisely, the intersections of such views.

These intersections, which we term objects, identify all of

the file regions within which conflicting accesses are

possible and (by extension) those regions for which there

can be no conflicts (termed shared-objects and private-

objects respectively). This information can be used by the

runtime system to significantly increase the parallelism of

file accesses and decrease the cost of enforcing strict file

consistency semantics and global cache coherence.

We demonstrate the benefits of this research using

FLASH-IO: a widely-used benchmark that specifically

addresses the issue of checkpointing in large, data-

intensive scientific codes. Checkpointing is becoming an

increasingly significant cost for data-intensive simulations

as the size of the computing systems upon which they

execute, and the time period for which they are executing,

continues to increase. An important consideration for

implementing checkpointing is that while checkpoint files

are written frequently, they tend to be read infrequently.

This is a very significant observation, since it suggests

that the checkpoint write operation should be highly

optimized, even if the optimization results in a more

expensive checkpoint read operation.

The primary contribution of this paper is the

introduction of a promising new approach that can provide

significantly enhanced I/O performance to data-intensive

applications in the general case, and to applications that

must continually save state in particular. The importance

of the work is further enhanced by it seamless integration

into ROMIO [7]: a widely-used high-performance

implementation of the MPI-IO standard developed at

Argonne National Laboratory. This paper should be of

interest to a large segment of the high-performance

computing community given the importance of scalable

I/O to the successful execution of HPC applications.

The remainder of the paper is organized as follows.

Section II discusses the most significant related research.

In section III, we cover file views and their significance

with respect to object-based I/O. We introduce our Object-

Based Caching System in section IV and our closely

related Object-Based Files in section V. Section VI details

our work with checkpointing in general, and specifically

with the FLASH-IO benchmark. Section VII covers our

experimental results. Finally, section VIII contains

conclusions and future research directions.

II. RELATED RESEARCH

Our research draws on a large body of previous work in

parallel I/O. In this section, we describe the most closely

related efforts.

Thakur, et al. [11] introduced the abstract device

interface for parallel I/O (ADIO) on which our system is

based. ADIO abstracts away details about any particular

filesystem, and presents a portable interface that can be

used in implementing a wide variety of parallel I/O

libraries including ROMIO [7].

A variety of work has focused on enhancing parallel I/O

with caching or buffering. DAChe [12] is a user-space

client side cache for high performance parallel I/O. Our

work also employs caching, but we are caching objects

while DAChe caches disk blocks. Active Buffering [13]

aims to improve the performance of I/O write operations

by using local buffering and performing the I/O in the

background. We do not currently use threads, but we

intend to take advantage of multithreading in the future.

Two-phase I/O [14] has been shown to increase parallel

I/O performance by coordinating communication between

I/O processors and reducing the number of small,

fragmented disk accesses, instead sharing file data among

processors and performing large contiguous disk accesses

which are significantly faster. We have taken advantage of

this idea in implementing our cache prefetch and flush

operations.

III. FILE VIEWS

An important feature of MPI-IO is the file view, which

maps the relationship between the regions of a file that a

process will access and the way those regions are laid out

on disk. A process cannot “see” or access any file regions

that are not in its file view, and the file view thus

essentially maps a contiguous window onto the (perhaps)

non-contiguous file regions in which the process will

operate. If its data is stored on disk as it is defined in the

file view, only a single I/O operation is required to move

the data to and from the disk. However, if the data is

stored non-contiguously on disk, multiple I/O operations

are required.

Figure 1. File view example. The shaded areas in the file are not

visible to the application unless the file view is altered.

Figure 1 illustrates the effect of a file view. Regions of

the file are mapped to a view window on a processor.

Subsequent file accesses are performed with respect to the

view window. File regions outside of the processor’s view

window are inaccessible to that processor unless the file

views are changed (via a collective operation).

The file views contain valuable information regarding

file access patterns, showing the file regions within which

contention can occur, and by extension, those regions in

which contention is not possible. In the next section we

show how such information can be used to significantly

improve parallel I/O performance.

IV. OBJECT-BASED CACHING SYSTEM

All of the processes that share a given file participate in

the object cache for that file. The cache buffer consists of

memory from the participating processes plus any

available local disk space. The cache objects are created

when a shared file is opened, and the objects and cache for

that file are torn down when the file is closed. There is a

local object manager for each process participating in the

cache. Once the objects are created, they are distributed

among the managers based on a cost model of assigning a

given object to a given process. The local manager

controls the meta-data for its objects and performs any

object locking necessary to maintain global cache

coherence. Once the objects are created, all subsequent

I/O operations are carried out in the cache (except in the

case of a sync() or close operation).

The way in which MPI objects are derived from the file

views of the participating processes is shown in Figure 2.

First, a collective operation sets the file view associated

with each processor (a). Next the views are shared among

all processors (b). The boundary offsets of each process’s

file view are collected into a global boundary list, which is

sorted and duplicate boundaries are removed (c). Finally,

an object is created for each pair of consecutive

boundaries (d).

File

View
Window

Figure 2. The object derivation process.

Once the objects are created, an additional step is taken

to calculate the reverse access set for each object, which is

simply a list of every processor that has access to that

object according to the current file views. This is done

efficiently using a p-bit bitmap, where p is the number of

processors participating in the file access. If the bitmaps

are arranged contiguously in memory, and each process

sets its bit for every object it can access, then a single

MPI_Allreduce operation is sufficient to share the entire

collection of reverse access sets among all processors. The

reverse access sets have two important uses. First, they

determine to which processor a particular object should be

assigned. Secondly, they show exactly which objects are

shared between processes and which are private to a

process (known as shared-objects and private-objects

respectively).

This distinction between shared objects and private

objects has two very important ramifications: First, only

shared objects must be locked, and such objects represent

the minimum overlap of shared data. This completely

eliminates any false sharing and provides the maximum

possible concurrency for data access. Second, such

information can simplify the locking mechanism and

significantly increase its performance. This is because

each object manager knows exactly which processes can

access its objects, and acts as a centralized lock manager

for those processes. Thus contention for write locks,

which can significantly reduce performance, is limited to

the subset of processes that can access the objects being

controlled by a given manager. In essence, this creates a

set of centralized lock managers that are operating in

parallel.

V. OBJECT-BASED FILES

Objects are created when a file is opened, and all

subsequent I/O operations are carried out in the cache

(except for sync() and close() which require the data to be

written to disk). Performing all possible I/O operations in

the cache can, in and of itself, provide tremendous

performance gains, especially when the locking

mechanism is simple and fast. However, even further

gains are possible when the file data is stored on disk as

objects because this allows each process to read/write its

objects from/to the disk in a single I/O operation.

Because objects do not necessarily correspond to the

traditional file model as a linear sequence of bytes,

metadata is needed to be able to map between the object

model and the traditional model. The structure of an

object-based file is shown in Figure 3. The file contains a

header section containing file metadata and a subsection

for each participating process containing the data written

by that process. The file metadata contains (at a

minimum) the number of process data blocks in the file

and the file offset to each of the blocks. It may also be

useful to include file view information, though this is not

essential. Each of the process data blocks includes a

section of object metadata, followed by the data from the

objects themselves. The object metadata includes the

offset and size of each object in this file, as well as the

object’s offset in the flat file.

This functionality is implemented transparently to the

user by treating object-based files as simply another file

system upon which ROMIO is implemented. Thus the

application can open an object-based file, manipulate the

data, and then write it to disk as a flat file. Alternatively, it

can open a flat file and then store it on disk as an object-

based file. This flexibility is a result of the cache design.

Cached data is stored as objects, but the metadata present

in the cache allows the flat file to be reconstructed

efficiently. Much like two-phase I/O, a subset of the

processors are used as aggregators to arrange object data

in file order, allowing disk writes to be efficiently

performed on large contiguous blocks.

Figure 3. The structure of an object-based file. The upper

rectangle represents the entire file, while the lower rectangle

expands one of the processor blocks to show more detail.

P0 P1

a

b

c

d

File
Metadata

P0 P1 P2 ••• Pn

Object
Metadata

O0 O1 ••• Ok

VI. FLASH IO AND CHECKPOINTING

The FLASH [15] simulation allows the solution of

fully-compressible, reactive hydrodynamic equations. It

was developed to study nuclear flashes on the surfaces of

neutron stars and white dwarfs. We designed our

experiment to show the effectiveness of using an object-

based cache in the checkpoint operations done by FLASH.

As FLASH is implemented in Fortran using the HDF5

Library for I/O, we wrote a MPI-IO version in C using the

same file layout and memory layout. Our FLASH/MPI

benchmark uses MPI-IO operations to write checkpoint

data from memory. Since our goal was to analyze I/O

performance, we did not include any computation step or

attempt to simulate one.

The principal data stored by FLASH consists of 80

three-dimensional blocks for each processor involved in

the simulation. Each block, in turn, consists of 512 smaller

sub-blocks, and the data contained in each sub-block

consists of 24 variables of type double. A simplified

version of the memory and file arrangements used by

FLASH is shown in Figure 4. In memory, variables for

each sub-block are stored together. The 512 sub-blocks

comprising a block are also adjacent. In the file, however,

the primary arrangement is by variable, so all of the

variables V0 from every block on every process are stored

contiguously, followed by all of the V1’s, and so forth.

The objects created when the file is opened are shown

in Figure 4 as dark rectangles. Each object contains all of

the variables for a particular block on a particular process.

Each object is 4096 bytes, and the file will contain 1920

objects for each processor involved in the run.

Note that while we can use MPI’s strided datatypes to

perform the writes from memory, it will require at least 24

individual MPI-IO operations to write the checkpoint file

once. Our use of an object-based cache mitigates the need

for most of these filesystem accesses, requiring only an

initial filesystem read, and a single write operation each

time the checkpoint is written to disk.

Our object-based system also provides an additional

benefit over traditional block caching schemes since each

object is categorized as shared or private based on which

processes may access it. Access to shared objects in the

cache requires that the objects be locked, while access to

private objects requires no locking. In the case of

FLASH-IO, all objects are private, thus the MPI-IO write

operations are completely exempt from cache level

locking.

Further benefit is achieved by writing the FLASH

checkpoint file to disk in our object based file format.

Instead of using two-phase I/O to reorder the data and

write it to disk as a linear sequence of bytes, the cache

objects and associated metadata are written to disk in a

single contiguous write operation. This is advantageous

not only during writing, but as will be seen, also when the

checkpoint file is needed to restore program state.

VII. EXPERIMENTAL RESULTS

As noted above, the checkpointing of application state

is becoming an increasingly important cost in large-scale,

scientific applications. However, in the vast majority of

cases the checkpointed data is never accessed. In such

cases, the checkpointed data can be written to disk as

objects thus significantly reducing the cost of creating

such files. If it turns out that the data is subsequently

needed, the object meta-data stored with the objects can

be used to recreate the objects within an application or to

convert the object-based file back to a flat file.

All experiments were performed using the Mercury

cluster, at the National Center for Supercomputing

Applications (NCSA). Mercury consists of 1,774 Itanium

2 processors connected with Myrinet and running SuSE

Linux SLES 8. The filesystem used was the General

Parallel File System (GPFS) developed by IBM. This

filesystem is organized in a Network Shared Disk Server

(NSD) configuration using 58 dedicated dual-processor

1.3 GHz Intel Itanium nodes. The GPFS Storage Area

Network (SAN) also available on the Mercury cluster was

••• •••

V0 V1 ••• V23 V0 V1 ••• V23 V0 V1 ••• V23 V0 V1 ••• V23 •••

V0 V0 ••• V0 V0 V0

P0 Memory:

FLASH File: V0 V0 ••• V0 V0 V0

Proc 0, Block 0 Proc p-1, Block 0

V0 V0 ••• V0 V0 V0

Proc 0, Block 1

512 doubles

Block 0, Sub-Block 0 Block 0, Sub-Block 1 Block 0, Sub-Block 2 Block 0, Sub-Block 3

Figure 4. File and memory layout for FLASH I/O.

not used for these experiments.

We began with MPICH2 (version 1.0.3), and fitted its

I/O subsystem (ROMIO) with our object-based cache

implementation. Memory for a cache is allocated at file

open, and the structure of the cache is calculated during

the collective operation that sets file views. Low level

filesystem reads and writes are replaced with

corresponding cache read and write operations. Finally,

the file synchronization function is modified to flush the

cache contents to the filesystem

FLASH Benchmark Execution Times

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

4 8 16 32 64

Number of Processors

Object Cache MPICH

T
im

e
 (
S
e
c
o
n
d
s
)

Figure 5. This figure shows the time required to produce

checkpoint files as a function of the number of processes.

Breakdown of FLASH-IO Execution Time

Using an Object Cache

0

20

40

60

80

100

120

4 8 16 32 64

Number of Processors

Object Calculation Object Prefetching

Cache Writes Filesystem Synchronization

T
im

e
 (
s
e
c
o
n
d
s
)

Figure 6. FLASH-IO performance breakdown.

A checkpoint write option was added, allowing the

contents of the cache to be written by each processor

independently to a special checkpoint file. A

corresponding checkpoint read operation was also

added to allow the cache to prefetch data from existing

checkpoint files.

To determine cache write performance, we ran our

FLASH/MPI benchmark first using the unmodified

version of MPICH, and again using our cache enhanced

version of MPICH with the new “checkpoint write” mode.

Figure 5 shows the average time required to create

checkpoint files using our object-based approach

compared with unmodified MPI-IO, on between 4 and 64

processes. For 4, 8 and 16 processors, each run was

repeated ten times, and the results averaged to produce the

data shown. Since the resulting times showed very little

variability, and since the runs become significantly more

costly at each doubling of processors, tests for 32 and 64

processors were each run twice and the results averaged.

As can be seen, the object-based approach significantly

enhanced performance, resulting in a 38% reduction in

execution time with 64 processors. These are very

encouraging results, and provide strong support to the

notion that treating data as objects rather than as a flat file

can offer tremendous performance improvements.

In Figure 6, we show the breakdown of creating the

objects and writing them to disk. Also, since object

calculation and prefetching are only required for the first

checkpoint operation, cache performance for subsequent

checkpoint operations would be further increased.

Reading of the checkpoint files was not a major concern

since it is assumed to be a relatively rare event. However,

to demonstrate feasibility, we implemented a routine to

perform object prefetching directly from the checkpoint

files. When executed on 64 processors, the prefetching

time was reduced from 25.6 seconds using the FLASH

file format to 5.5 seconds using individual checkpoint

files. This improvement is largely due to the ability of

each process to read its part of the checkpoint file

independently as a contiguous block without inter-

processor communication.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper we have introduced our object-based

caching system for parallel I/O. We have shown that using

the information in file views results in the efficient

partitioning of file data into objects. We then showed that

writing checkpoint files as objects can significantly

improve performance when compared to MPI-IO.

Our future work will include optimizing the

implementation of our current system. We also intend to

extend the set of benchmarks and applications used to

evaluate our approach. Work on our lock management

system is ongoing, and we will report on its

implementation and performance in future publications.

References

[1] Lustre: scalable, secure, robust, highly-available cluster file system.

An offshoot of AFS, CODA, and Ext2., www.lustre.org
[2] F. Schmuck and R. Haskin, "GPFS: A shared-disk file system for

large computing clusters. ," presented at Conference on File and

Storage Technologies, IBM Almaden Research Center, San Jose,
California.

[3] Panasas, http://www.panasas.com

[4] MPI-2: Extensions to the Message-Passing Interface,

http://www.mpi-forum.org/docs/mpi2-report.pdf

[5] A. Ching, A. Choudhary, K. Coloma, W.-k. Liao, R. Ross, and W.

Gropp, "Noncontiguous I/O Access Through MPI-IO," presented at

the 3rd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID'03), 2003.

[6] R. Thakur, W. Gropp, and E. Lusk, "Optimizing Noncontiguous
Accesses in MPI-IO," Parallel Computing, vol. 28, pp. 83-105,

January 2002.

[7] R. Thakur, R. Ross, and W. Gropp, "Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation," Technical

Memorandum ANL/MCS-TM-234, Mathematics and Computer

Science Division, Argonne National Laboratory, Revised May
2004.

[8] R. Latham, R. Ross, and R. Thakur, "The impact of file systems on

MPI-IO scalability," presented at the 11th European Parallel

Virtural Machine and Message Passing Interface Users Group

Meeting, 2004.

[9] P. Aarestad, A. Ching, G. Thiruvathukal, and A. Choudhary,

"Scalable Approaches for Supporting MPI-IO Atomicity.,"
presented at 6th International Symposium on Cluster Computing

and the Grid (CCGrid).

[10] MPI File Views. http://www-unix.mcs.anl.gov/mpi/mpi-
standard/mpi-report-2.0/node184.htm

[11] R. Thakur, W. Gropp, and E. Lusk, "An Abstract-Device Interface

for Implementing Portable Parallel-I/O Interfaces," presented at the

6th Symposium on the Frontiers of Massively Parallel

Computation, 1996.

[12] K. Coloma, A. Choudhary, W.-k. Liao, L. Ward, and S. Tideman,

"DAChe: Direct Access Cache System for Parallel I/O," presented

at International Supercomputer Conference, 2005.

[13] X. Ma, M. Winslett, J. Lee, and S. Yu, "Faster Collective Output

through Active Buffering," presented at IDPDS 2002, 2002.

[14] R. Thakur and A. Choudhary, "An Extended Two-Phase Method

for Accessing Sections of Out-of-Core Arrays," Scientific

Programming, vol. 5, pp. 301-317, 1996.

[15] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.

Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo,
"FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling

Astrophysical Thermonuclear Flashes," The Astrophysical Journal

Supplement Series, pp. 273-334, 2000.

