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Abstract – We contend that the scalable I/O problem in high 

performance computing is largely due to the legacy view of a file 

as a linear sequence of bytes. In this paper we introduce an 

alternative to the traditional “flat file” that uses the information 

contained in file views to partition a file into an optimal set of 

objects, minimizing locking contention and simplifying the lock 

management strategy. We illustrate the use of an object based 

cache added to ROMIO to efficiently and transparently add 

object-based file capabilities to MPI-IO. We analyze the 

performance of our system using the FLASH-IO benchmark, and 

demonstrate a substantial performance improvement over the 

standard ROMIO implementation. 
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I. INTRODUCTION 

Large-scale computing clusters are increasingly being 

used to execute large-scale, data-intensive applications in 

several disciplines including, for example, high-resolution 

simulation of natural phenomenon, large-scale climate 

modeling, earthquake modeling, visualization/animation 

of scientific data, and distributed collaboration. The 

execution of such applications is supported by state-of-

the-art file systems (e.g., Lustre [1], GPFS [2], Panasas 

[3]) that provide tremendous aggregate storage capacity, 

and by parallel I/O interfaces that can interact with such 

file systems to optimize access to the underlying store. 

The most widely used parallel I/O interface is MPI-IO [4], 

which provides to the application a rich API that can be 

used to express complex I/O access patterns, and which 

provides to the underlying implementation many 

opportunities for important I/O optimizations. The 

problem, however, is that even with all of this hardware 

and software support, the I/O requirements of data-

intensive applications are still straining the I/O capabilities 

of even the largest, most powerful file systems in use 

today. Thus new approaches are needed to support the 

execution of current and next-generation data-intensive 

applications.  

There are many factors that make this problem, 

generally termed the scalable I/O problem, so challenging. 

The most often cited difficulties include the I/O access 

patterns exhibited by scientific applications (e.g., non-

contiguous I/O [5-7]) poor file system support for parallel 

I/O optimizations [8], strict file consistency semantics [9], 

and the latency of accessing I/O devices across a network. 

However, we believe that a more fundamental problem, 

whose solution would help alleviate all of these 

challenges, is the legacy view of a file as a linear sequence 

of bytes.  The problem is that application processes rarely 

access data in a way that matches this file model, and a 

large component of the scalability problem is the cost of 

translating between the process data model and the file 

data model. In fact, the data model used by applications is 

more accurately defined as an object model, where each 

process maintains a collection of (perhaps) unrelated 

objects. We believe that aligning these different data 

models will significantly enhance the performance of 

parallel I/O for large-scale, data-intensive applications.  

This research is attacking the scalable I/O problem by 

developing the infrastructure to merge the power and 

flexibility of the MPI-IO parallel I/O interface with a more 

powerful object-based file model. Toward this end, we are 

developing an object-based caching system that serves as 

an interface between MPI applications and object-based 

files. The object-based cache is based on MPI file views 

[10], or, more precisely, the intersections of such views. 

These intersections, which we term objects, identify all of 

the file regions within which conflicting accesses are 

possible and (by extension) those regions for which there 

can be no conflicts (termed shared-objects and private-

objects respectively). This information can be used by the 

runtime system to significantly increase the parallelism of 

file accesses and decrease the cost of enforcing strict file 

consistency semantics and global cache coherence.  

We demonstrate the benefits of this research using 

FLASH-IO: a widely-used benchmark that specifically 

addresses the issue of checkpointing in large, data-

intensive scientific codes. Checkpointing is becoming an 

increasingly significant cost for data-intensive simulations 

as the size of the computing systems upon which they 

execute, and the time period for which they are executing, 

continues to increase. An important consideration for 

implementing checkpointing is that while checkpoint files 

are written frequently, they tend to be read infrequently. 

This is a very significant observation, since it suggests 

that the checkpoint write operation should be highly 

optimized, even if the optimization results in a more 

expensive checkpoint read operation. 

The primary contribution of this paper is the 

introduction of a promising new approach that can provide 

significantly enhanced I/O performance to data-intensive 

applications in the general case, and to applications that 

must continually save state in particular. The importance 

of the work is further enhanced by it seamless integration 



into ROMIO [7]: a widely-used high-performance 

implementation of the MPI-IO standard developed at 

Argonne National Laboratory. This paper should be of 

interest to a large segment of the high-performance 

computing community given the importance of scalable 

I/O to the successful execution of HPC applications.  

The remainder of the paper is organized as follows. 

Section II discusses the most significant related research. 

In section III, we cover file views and their significance 

with respect to object-based I/O. We introduce our Object-

Based Caching System in section IV and our closely 

related Object-Based Files in section V. Section VI details 

our work with checkpointing in general, and specifically 

with the FLASH-IO benchmark. Section VII covers our 

experimental results. Finally, section VIII contains 

conclusions and future research directions. 

II. RELATED RESEARCH 

Our research draws on a large body of previous work in 

parallel I/O. In this section, we describe the most closely 

related efforts. 

Thakur, et al. [11] introduced the abstract device 

interface for parallel I/O (ADIO) on which our system is 

based. ADIO abstracts away details about any particular 

filesystem, and presents a portable interface that can be 

used in implementing a wide variety of parallel I/O 

libraries including ROMIO [7]. 

A variety of work has focused on enhancing parallel I/O 

with caching or buffering. DAChe [12] is a user-space 

client side cache for high performance parallel I/O. Our 

work also employs caching, but we are caching objects 

while DAChe caches disk blocks. Active Buffering [13] 

aims to improve the performance of I/O write operations 

by using local buffering and performing the I/O in the 

background. We do not currently use threads, but we 

intend to take advantage of multithreading in the future. 

Two-phase I/O [14] has been shown to increase parallel 

I/O performance by coordinating communication between 

I/O processors and reducing the number of small, 

fragmented disk accesses, instead sharing file data among 

processors and performing large contiguous disk accesses 

which are significantly faster. We have taken advantage of 

this idea in implementing our cache prefetch and flush 

operations. 

III. FILE VIEWS 

An important feature of MPI-IO is the file view, which 

maps the relationship between the regions of a file that a 

process will access and the way those regions are laid out 

on disk. A process cannot “see” or access any file regions 

that are not in its file view, and the file view thus 

essentially maps a contiguous window onto the (perhaps) 

non-contiguous file regions in which the process will 

operate. If its data is stored on disk as it is defined in the 

file view, only a single I/O operation is required to move 

the data to and from the disk. However, if the data is 

stored non-contiguously on disk, multiple I/O operations 

are required. 

 

Figure 1. File view example. The shaded areas in the file are not 

visible to the application unless the file view is altered. 

 

Figure 1 illustrates the effect of a file view. Regions of 

the file are mapped to a view window on a processor. 

Subsequent file accesses are performed with respect to the 

view window. File regions outside of the processor’s view 

window are inaccessible to that processor unless the file 

views are changed (via a collective operation). 

The file views contain valuable information regarding 

file access patterns, showing the file regions within which 

contention can occur, and by extension, those regions in 

which contention is not possible. In the next section we 

show how such information can be used to significantly 

improve parallel I/O performance. 

 

IV. OBJECT-BASED CACHING SYSTEM 

All of the processes that share a given file participate in 

the object cache for that file. The cache buffer consists of 

memory from the participating processes plus any 

available local disk space. The cache objects are created 

when a shared file is opened, and the objects and cache for 

that file are torn down when the file is closed. There is a 

local object manager for each process participating in the 

cache. Once the objects are created, they are distributed 

among the managers based on a cost model of assigning a 

given object to a given process. The local manager 

controls the meta-data for its objects and performs any 

object locking necessary to maintain global cache 

coherence. Once the objects are created, all subsequent 

I/O operations are carried out in the cache (except in the 

case of a sync() or close operation).   

The way in which MPI objects are derived from the file 

views of the participating processes is shown in Figure 2. 

First, a collective operation sets the file view associated 

with each processor (a). Next the views are shared among 

all processors (b). The boundary offsets of each process’s 

file view are collected into a global boundary list, which is 

sorted and duplicate boundaries are removed (c). Finally, 

an object is created for each pair of consecutive 

boundaries (d). 
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Figure 2. The object derivation process. 

 

 

Once the objects are created, an additional step is taken 

to calculate the reverse access set for each object, which is 

simply a list of every processor that has access to that 

object according to the current file views. This is done 

efficiently using a p-bit bitmap, where p is the number of 

processors participating in the file access. If the bitmaps 

are arranged contiguously in memory, and each process 

sets its bit for every object it can access, then a single 

MPI_Allreduce operation is sufficient to share the entire 

collection of reverse access sets among all processors. The 

reverse access sets have two important uses. First, they 

determine to which processor a particular object should be 

assigned.  Secondly, they show exactly which objects are 

shared between processes and which are private to a 

process (known as shared-objects and private-objects 

respectively). 

This distinction between shared objects and private 

objects has two very important ramifications: First, only 

shared objects must be locked, and such objects represent 

the minimum overlap of shared data. This completely 

eliminates any false sharing and provides the maximum 

possible concurrency for data access. Second, such 

information can simplify the locking mechanism and 

significantly increase its performance. This is because 

each object manager knows exactly which processes can 

access its objects, and acts as a centralized lock manager 

for those processes. Thus contention for write locks, 

which can significantly reduce performance, is limited to 

the subset of processes that can access the objects being 

controlled by a given manager. In essence, this creates a 

set of centralized lock managers that are operating in 

parallel.  

V. OBJECT-BASED FILES 

Objects are created when a file is opened, and all 

subsequent I/O operations are carried out in the cache 

(except for sync() and close() which require the data to be 

written to disk). Performing all possible I/O operations in 

the cache can, in and of itself, provide tremendous 

performance gains, especially when the locking 

mechanism is simple and fast. However, even further 

gains are possible when the file data is stored on disk as 

objects because this allows each process to read/write its 

objects from/to the disk in a single I/O operation. 

Because objects do not necessarily correspond to the 

traditional file model as a linear sequence of bytes, 

metadata is needed to be able to map between the object 

model and the traditional model. The structure of an 

object-based file is shown in Figure 3. The file contains a 

header section containing file metadata and a subsection 

for each participating process containing the data written 

by that process. The file metadata contains (at a 

minimum) the number of process data blocks in the file 

and the file offset to each of the blocks. It may also be 

useful to include file view information, though this is not 

essential. Each of the process data blocks includes a 

section of object metadata, followed by the data from the 

objects themselves. The object metadata includes the 

offset and size of each object in this file, as well as the 

object’s offset in the flat file. 

This functionality is implemented transparently to the 

user by treating object-based files as simply another file 

system upon which ROMIO is implemented. Thus the 

application can open an object-based file, manipulate the 

data, and then write it to disk as a flat file. Alternatively, it 

can open a flat file and then store it on disk as an object-

based file. This flexibility is a result of the cache design. 

Cached data is stored as objects, but the metadata present 

in the cache allows the flat file to be reconstructed 

efficiently. Much like two-phase I/O, a subset of the 

processors are used as aggregators to arrange object data 

in file order, allowing disk writes to be efficiently 

performed on large contiguous blocks. 

 

 

Figure 3. The structure of an object-based file. The upper 

rectangle represents the entire file, while the lower rectangle 

expands one of the processor blocks to show more detail. 
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VI. FLASH IO AND CHECKPOINTING 

The FLASH [15] simulation allows the solution of 

fully-compressible, reactive hydrodynamic equations. It 

was developed to study nuclear flashes on the surfaces of 

neutron stars and white dwarfs. We designed our 

experiment to show the effectiveness of using an object-

based cache in the checkpoint operations done by FLASH. 

As FLASH is implemented in Fortran using the HDF5 

Library for I/O, we wrote a MPI-IO version in C using the 

same file layout and memory layout. Our FLASH/MPI 

benchmark uses MPI-IO operations to write checkpoint 

data from memory. Since our goal was to analyze I/O 

performance, we did not include any computation step or 

attempt to simulate one. 

The principal data stored by FLASH consists of 80 

three-dimensional blocks for each processor involved in 

the simulation. Each block, in turn, consists of 512 smaller 

sub-blocks, and the data contained in each sub-block 

consists of 24 variables of type double. A simplified 

version of the memory and file arrangements used by 

FLASH is shown in Figure 4. In memory, variables for 

each sub-block are stored together. The 512 sub-blocks 

comprising a block are also adjacent. In the file, however, 

the primary arrangement is by variable, so all of the 

variables V0 from every block on every process are stored 

contiguously, followed by all of the V1’s, and so forth. 

The objects created when the file is opened are shown 

in Figure 4 as dark rectangles. Each object contains all of 

the variables for a particular block on a particular process. 

Each object is 4096 bytes, and the file will contain 1920 

objects for each processor involved in the run. 

Note that while we can use MPI’s strided datatypes to 

perform the writes from memory, it will require at least 24 

individual MPI-IO operations to write the checkpoint file 

once. Our use of an object-based cache mitigates the need 

for most of these filesystem accesses, requiring only an 

initial filesystem read, and a single write operation each 

time the checkpoint is written to disk. 

Our object-based system also provides an additional 

benefit over traditional block caching schemes since each 

object is categorized as shared or private based on which 

processes may access it. Access to shared objects in the 

cache requires that the objects be locked, while access to 

private objects requires no locking.  In the case of 

FLASH-IO, all objects are private, thus the MPI-IO write 

operations are completely exempt from cache level 

locking. 

Further benefit is achieved by writing the FLASH 

checkpoint file to disk in our object based file format. 

Instead of using two-phase I/O to reorder the data and 

write it to disk as a linear sequence of bytes, the cache 

objects and associated metadata are written to disk in a 

single contiguous write operation. This is advantageous 

not only during writing, but as will be seen, also when the 

checkpoint file is needed to restore program state. 

VII. EXPERIMENTAL RESULTS 

As noted above, the checkpointing of application state 

is becoming an increasingly important cost in large-scale, 

scientific applications. However, in the vast majority of 

cases the checkpointed data is never accessed. In such 

cases, the checkpointed data can be written to disk as 

objects thus significantly reducing the cost of creating 

such files. If it turns out that the data is subsequently 

needed, the object meta-data stored with the objects can 

be used to recreate the objects within an application or to 

convert the object-based file back to a flat file.  

All experiments were performed using the Mercury 

cluster, at the National Center for Supercomputing 

Applications (NCSA). Mercury consists of 1,774 Itanium 

2 processors connected with Myrinet and running SuSE 

Linux SLES 8. The filesystem used was the General 

Parallel File System (GPFS) developed by IBM. This 

filesystem is organized in a Network Shared Disk Server 

(NSD) configuration using 58 dedicated dual-processor 

1.3 GHz Intel Itanium nodes. The GPFS Storage Area 

Network (SAN) also available on the Mercury cluster was 
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Figure 4. File and memory layout for FLASH I/O. 



not used for these experiments. 

We began with MPICH2 (version 1.0.3), and fitted its 

I/O subsystem (ROMIO) with our object-based cache 

implementation. Memory for a cache is allocated at file 

open, and the structure of the cache is calculated during 

the collective operation that sets file views. Low level 

filesystem reads and writes are replaced with 

corresponding cache read and write operations. Finally, 

the file synchronization function is modified to flush the 

cache contents to the filesystem 
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Figure 5. This figure shows the time required to produce 

checkpoint files as a function of the number of processes. 
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Figure 6. FLASH-IO performance breakdown. 

 

 

 

A checkpoint write option was added, allowing the 

contents of the cache to be written by each processor 

independently to a special checkpoint file. A 

corresponding checkpoint read operation was also 

added to allow the cache to prefetch data from existing 

checkpoint files.  

To determine cache write performance, we ran our 

FLASH/MPI benchmark first using the unmodified 

version of MPICH, and again using our cache enhanced 

version of MPICH with the new “checkpoint write” mode. 

Figure 5 shows the average time required to create 

checkpoint files using our object-based approach 

compared with unmodified MPI-IO, on between 4 and 64 

processes. For 4, 8 and 16 processors, each run was 

repeated ten times, and the results averaged to produce the 

data shown. Since the resulting times showed very little 

variability, and since the runs become significantly more 

costly at each doubling of processors, tests for 32 and 64 

processors were each run twice and the results averaged.  

As can be seen, the object-based approach significantly 

enhanced performance, resulting in a 38% reduction in 

execution time with 64 processors. These are very 

encouraging results, and provide strong support to the 

notion that treating data as objects rather than as a flat file 

can offer tremendous performance improvements.  

In Figure 6, we show the breakdown of creating the 

objects and writing them to disk. Also, since object 

calculation and prefetching are only required for the first 

checkpoint operation, cache performance for subsequent 

checkpoint operations would be further increased. 

Reading of the checkpoint files was not a major concern 

since it is assumed to be a relatively rare event. However, 

to demonstrate feasibility, we implemented a routine to 

perform object prefetching directly from the checkpoint 

files. When executed on 64 processors, the prefetching 

time was reduced from 25.6 seconds using the FLASH 

file format to 5.5 seconds using individual checkpoint 

files. This improvement is largely due to the ability of 

each process to read its part of the checkpoint file 

independently as a contiguous block without inter-

processor communication. 

VIII. CONCLUSION AND FUTURE RESEARCH 

In this paper we have introduced our object-based 

caching system for parallel I/O. We have shown that using 

the information in file views results in the efficient 

partitioning of file data into objects. We then showed that 

writing checkpoint files as objects can significantly 

improve performance when compared to MPI-IO. 

Our future work will include optimizing the 

implementation of our current system. We also intend to 

extend the set of benchmarks and applications used to 

evaluate our approach. Work on our lock management 

system is ongoing, and we will report on its 

implementation and performance in future publications. 
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