
Y-Lib: A User Level Library to Increase the

Performance of MPI-IO in a Lustre File System

Environment
Phillip M. Dickens and Jeremy Logan

Department of Computer Science, University of Maine

Orono, Maine, USA
 dickens@umcs.maine.edu
 jeremy.logan@maine.edu

Abstract—It is widely known that MPI-IO performs poorly in a

Lustre file system environment, although the reasons for such

performance are currently not well understood. The research

presented in this paper strongly supports our hypothesis that MPI-IO

performs poorly in this environment because of the fundamental

assumptions upon which most parallel I/O optimizations are based.

In particular, it is almost universally believed that parallel I/O

performance is optimized when aggregator processes perform large,

contiguous I/O operations in parallel. Our research shows that this

approach generally provides the worst performance in a Lustre

environment, and that the best performance is often obtained when

the aggregator processes perform a large number of small, non-

contiguous I/O operations.

In this paper, we first demonstrate and explain these non-intuitive

results. We then present a user-level library, termed Y-lib, which

redistributes data in a way that conforms much more closely with the

Lustre storage architecture than does the data redistribution pattern

employed by MPI-IO. We then provide experimental results showing

that Y-lib can increase performance between 300% and 1000%

depending on the number of aggregator processes and file size.

Finally, we cause MPI-IO itself to use our data redistribution scheme,

and show that doing so results in an increase in performance of a

similar magnitude when compared to the current MPI-IO data

redistribution algorithms.

I. INTRODUCTION

Large-scale computing clusters are being increasingly

utilized to execute large, data-intensive applications in several

scientific domains. Such domains include high-resolution

simulation of natural phenomenon, large-scale image analysis,

climate modelling, and complex financial modelling. The I/O

requirements of such applications can be staggering, ranging

from terabytes to petabytes, and managing such massive data

sets has become a significant bottleneck in parallel application

performance.

This issue has led to the development of powerful parallel

file systems that can provide tremendous aggregate storage

capacity with highly concurrent access to the underlying data

(e.g., Lustre [1], GPFS [15], Panasas [7]). This issue has also

led to the development of parallel I/O interfaces with high-

performance implementations that can interact with the file

system API to optimise access to the underlying storage. An

important combination of file system/parallel I/O interface is

Lustre, an object-based, parallel file system developed for

extreme-scale computing clusters, and MPI-IO [5], the most

widely-used parallel I/O API. The problem, however, is that

there is currently no implementation of the MPI-IO standard

that is optimised for the Lustre file system, and the

performance of current implementations is, by and large, quite

poor [3, 12, 21]. Given the wide spread use of MPI-IO, and

the expanding utilization of the Lustre file system, it is critical

to provide an MPI-IO implementation that can provide high-

performance, scalable I/O to MPI applications executing in

this environment.

There are two key challenges associated with achieving

high performance with MPI-IO in a Lustre environment. First,

Lustre exports only the POSIX file system API, which was

not designed for a parallel I/O environment and provides little

support for parallel I/O optimisations. This has led to the

development of approaches (or “workarounds”) that can

circumvent (at least some of) the performance problems

inherent in POSIX-based file systems (e.g., two-phase I/O [17,

18], and data-sieving[20]). The second problem is that the

assumptions upon which these optimisations are based simply

do not hold in a Lustre environment.

The most important and widely held assumption, and the

one upon which most collective I/O optimisations are based, is

that parallel I/O performance is optimised when application

processes perform a small number of large, contiguous (non-

overlapping) I/O operations concurrently. In fact, this is the

assumption upon which collective I/O operations are based.

The research presented in this paper, however, shows that this

assumption can lead to very poor I/O performance in a Lustre

file system environment. Moreover, we provide a large set of

experimental results showing that the antithesis of this

approach, where each aggregator process performs a large

number of small (non-contiguous) I/O operations, can, when

properly aligned with the Lustre storage architecture, provide

significantly improved parallel I/O performance.

In this paper, we document and hypothesize the reasons for

these non-intuitive results. In particular, we believe that it is

the data aggregation patterns currently utilized in collective

I/O operations, which result in large, contiguous I/O

operations, that are largely responsible for the poor MPI-IO

performance observed in Lustre file systems. We believe this

is problematic because it redistributes application data in a

way that conforms poorly to Lustre’s object-based storage

architecture. Based on these ideas, we present an alternative

approach, embodied in a user-level library termed Y-Lib,

which, in a collective I/O operation, redistributes data in a

way that more closely conforms to the Lustre object-based

storage architecture. We provide experimental results, taken at

a large-scale Lustre installation, showing that this alternative

approach to collective I/O operations does, in fact, provide

significantly enhanced parallel I/O performance.

This research is performed within the context of ROMIO

[x], a high-performance implementation of the MPI-IO

standard developed and maintained at Argonne National

Laboratory. There are three reasons for choosing ROMIO as

the parallel I/O implementation with which we compare our

approach: It is generally regarded as the most widely used

implementation of MPI-IO, it is highly portable, and it

provides a powerful parallel I/O infrastructure that can be

leveraged in this research.

In this paper, we investigate the performance of collective

write operations implemented in ROMIO on a large-scale

Lustre installation at the University of Texas Advanced

Computing Center. We focus on the collective write

operations because they represent one of the most important

parallel I/O optimisations defined in the MPI-IO standard and

because they have been identified as exhibiting particularly

poor performance in Lustre file systems.

This paper makes two primary contributions. First, it

increases our understanding of the interactions between

collective I/O optimisations in a very important

implementation of the MPI-IO standard, the underlying

assumptions upon which these optimisations are based, and

the Lustre architecture. Second, it shows how the

implementation of collective I/O operations can be more

closely aligned with Lustre’s object-based storage architecture,

resulting in up to a 1500% increase in performance. We

believe this paper will be of interest to a large segment of the

high-performance computing community given the

importance of both MPI-IO and Lustre to large-scale,

scientific computing.

The rest of this paper is organized as follows. In Section 2,

we provide background information on MPI-IO and collective

I/O operations. In Section 3, we discuss the Lustre object-

based storage architecture. In Section 4, we provide our

experimental design, and, in Section 5, we provide our

experimental results. In Section 6, we provide a discussion of

our results, and provide our conclusions in Section 7.

Background

The I/O requirements of parallel, data-intensive

applications have become the major bottleneck in many areas

of scientific computing. Historically, the reason for such poor

performance has been the I/O access patterns exhibited by

scientific applications. In particular, it has been well

established that each process tends to make a large number of

small I/O requests, incurring the high overhead of performing

I/O across a network with each such request [9, 11, 19].

However, it is often the case that in the aggregate, the

processes are performing large, contiguous I/O operations,

which historically have made much better use of the parallel

I/O hardware.

MPI-IO [5], the I/O component of the MPI2 standard, was

developed (in part at least) to take advantage of such global

information to enhance parallel I/O performance. One of the

most important mechanisms through which such global

information can be obtained and leveraged is a set of

collective I/O operations, where each process provides to the

implementation information about its individual I/O request.

The rich and flexible parallel I/O API defined in MPI-IO

facilitates collective operations by enabling the individual

processes to express complex parallel I/O access patterns in a

single request (e.g., non-contiguous access patterns). Once the

implementation has a picture of the global I/O request, it can

combine the individual requests and submit them in a way that

optimizes the particular parallel I/O subsystem.

It is generally agreed that the most widely used

implementation of the MPI-IO standard is ROMIO [20],

which is integrated into the MPICH2 MPI library developed

and maintained at Argonne National Laboratory. ROMIO

provides key optimizations for enhanced performance, and is

implemented on a wide range of architectures and file systems.

The portability of ROMIO stems from an internal layer

called ADIO [16] upon which ROMIO implements the MPI-

IO interface. ADIO implements the file system dependent

features, and is thus implemented separately for each file

system (see Figure 1).

Figure 1: ROMIO is implemented on top of ADIO, which is implemented
separately for each file system.

ROMIO implements the collective I/O operations using a

technique termed two-phase I/O [23, 25]. Consider a

collective write operation. In the first phase, the processes

exchange their individual I/O requests to determine the global

request. The processes then use inter-process communication

to re-distribute the data to a set of aggregator processes. The

data is re-distributed such that each aggregator process has a

large, contiguous chunk of data that can be written to the file

system in a single operation. The parallelism comes from the

aggregator processes performing their writes concurrently.

This is successful because it is significantly more expensive to

ROMIO

ADIO

POSIX PVFS GPFS Lustre OBFS

write to the file system than it is to perform inter-process

communication.

 To help clarify these ideas, consider the following

example. Assume an SPMD computation where each process

computes over a different region of a two-dimensional file (16

x 16 array of integers). Further, assume there are four compute

nodes, four I/O nodes, and that each process has a 4 x 4 sub-

array. The array is stored on disk in row-major order with a

stripe unit equal to one row of the array. Also, the array is

distributed among the processes in a block-block distribution

as shown in Figure 2.

Assume each process is ready to write its data to disk and

enters into a collective write operation. In the first phase, the

processes exchange information about their individual

requests to determine the aggregate I/O request, and determine

the best strategy for writing the data to disk. In this case, it is

determined to be optimal for each process to write a single

row of the array to disk in parallel. To implement this strategy,

process P0 must send array elements (1, 0) and (1, 1) to

process P1, and must receive elements (0, 2) and (0, 3) from

process P1. The exchanges between processes P2 and P3 are

similar. Once each process receives the data it needs, they

write their portion of the data to disk in one I/O request in

parallel (note that in this example each process is an

aggregator).

We further explore collective write operations in the

sections that follow.

II. LUSTRE ARCHITECTURE

Lustre consists of three primary components: file system

clients (that request I/O services), object storage servers

(OSSs) (that provide I/O services), and meta-data servers that

manage the name space of the file system. Each OSS can

support multiple Object Storage Targets (OSTs) that handle

the duties of object storage and management. The scalability

of Lustre is derived from two primary sources. First, file meta-

data operations are de-coupled from file I/O operations. The

meta-data is stored separately from the file data, and once a

client has obtained the meta-data it communicates directly

with the OSSs in subsequent I/O operations. This provides

significant parallelism because multiple clients can interact

with multiple storage servers in parallel. The second driver for

scalable performance is the striping of files across multiple

OSTs, which provides parallel access to shared files by

multiple clients.

Lustre provides APIs allowing the application to set the

stripe size, the number of OSTs across which the file will be

striped (the stripe width), the index of the OST in which the

first stripe will be stored, and to retrieve the striping

information for a given file. The stripe size is set when the file

is opened and cannot be modified once set. Lustre assigns

stripes to OSTs in a round-robin fashion, beginning with the

designated OST index.

The POSIX file consistency semantics are enforced through

a distributed locking system, where each OST acts as a lock

server for the objects it controls [10]. The locking protocol

requires that a lock be obtained before any file data can be

modified or written into the client-side cache. While the

Lustre documentation states that the locking mechanism can

be disabled for higher performance [4], we have never

observed such improvement by doing so.

A. Known issues with Parallel I/O on Lustre

Previous research efforts with parallel I/O on the Lustre file

system have shed some light on factors contributing to the

poor performance of MPI-IO, including the problems caused

by I/O accesses that are not aligned on stripe boundaries [13,

14]. Figure 2 helps to illustrate the problem that arises when

I/O accesses cross stripe boundaries. Assume the two

processes are writing to non-overlapping sections of the file;

however because the requests are not aligned on stripe

boundaries, both processes are accessing different regions of

stripe 1. Because of Lustre’s locking protocol, each process

must acquire the lock associated with the stripe, which results

in unnecessary lock contention. Thus the writes to stripe 1

must be serialized, resulting in suboptimal performance.

Figure 2: Crossing Stripe Boundaries with Lustre

An ADIO driver for Lustre has recently been added to

ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This

new Lustre driver adds support via hints for user settable

features such as Lustre striping and direct I/O. In addition, the

driver insures that disk accesses are aligned on Lustre stripe

boundaries.

Process 0

Stripe 0 Stripe 1

OST 2

Stripe 2

Process 1

OST 1

OST 0

IOP0 IOP1

IOP2

IOP3

P0

P1

P2

P3

Inter-processor

Communication

Network

0 1 2 3

0

1

2

3

P0 P1

P2 P3

Figure 2. Example system with (a) four compute processors and four I/O
processors and (b) a 4x4 array partitioned in block-block order.

B. Data Aggregation Patterns

While the issues addressed by the new ADIO driver are

necessary for high-performance parallel I/O in Lustre, they are

not, in our view, sufficient. This is because they do not

address the problems arising from multiple aggregator

processes making large, contiguous I/O requests concurrently.

This point may be best explained through a simple example.

Consider a two-phase collective write operation with the

following parameters: four aggregator processes, a 32 MB file,

a stripe size of 1 MB, eight OSTs, and a stripe width of eight.

Assume the four processes have completed the first phase of

the collective write operation, and that each process is ready

to write a contiguous eight MB block to disk. Thus process P0

will write stripes 0 – 7, process P1 will write stripes 8 – 15,

and so forth. This communication pattern is shown in Figure 3

below.

Two problems become apparent immediately. First, every

process is communicating with every OSS. Second, every

process must obtain eight locks. Thus there is significant

communication overhead (each process and each OSS must

multiplex four separate, concurrent communication channels),

and there is contention at each lock manager for locking

services (but not for the locks themselves). While this is a

trivial example, one can imagine significant degradation in

performance as the file size, number of processes, and number

of OSTs becomes large. Thus a primary flaw in the

assumption that performing large, contiguous I/O operations

provides the best parallel I/O performance is that it does not

account for the contention of file system and network

resources.

Figure 3: Communication pattern for two-phase I/O with Lustre.

III. DATA REDISTRIBUTION WITH Y-LIB

The aggregation pattern shown in Figure 3 is what we term

an all-to-all OST pattern because it involves all aggregator

processes communicating will all of the OSTs. The simplest

solution is to limit the number of OSTs across which a file is

striped. In fact, the recommended (and default) stripe width is

four. While this certainly reduces contention, it also severely

limits the parallelism of file accesses, which, in turn, limits

parallel I/O performance. However, we believe it is possible

to both reduce contention and maintain a high degree of

parallelism, by implementing an alternative data aggregation

pattern. This is accomplished via a user-level library termed

Y-Lib.

The basic idea behind Y-Lib is to minimize the number of

OSTs with which a given aggregator process communicates.

In particular, it seeks to redistribute data in what we term a

“one-to-one” OST pattern, where the data is arranged such

that each aggregator process communicates with exactly one

OST. Once the data is redistributed in this fashion, each

process performs a series of non-contiguous I/O operations (in

parallel) to write the data to disk. We provide a simple

example to help illustrate these ideas.

Assume there are four application processes that share a 16

MB file with a stripe size of 1 MB and a stripe width of four

(i.e., it is striped across four OSTs). Given these parameters,

Lustre distributes the 16 stripes across the four OSTs in a

round-robin pattern as shown in Figure 4. Thus stripes 0, 4, 8,

and 12 are stored on OST 0, stripes 1, 5, 9, and 13 are stored

on OST 1, and so forth.

Figure 4: Lustre File Layout

Figure 5(a) shows the data blocks residing on the four

processes in a way that is termed the conforming distribution

where each process can write its data to disk in a single,

contiguous I/O operation. This is the distribution pattern that

results from the first phase of ROMIO’s collective write

operations, based on the assumption that performing large,

contiguous I/O operations provides optimal parallel I/O

performance.

OST 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

OST 2 OST 3 OST 4

Process P0 Process P1 Process P2 Process P3

0 8

16 24

OSS

OSS

OSS

OSS

7 15

23 31
6 14

22 30
5 13

21 29
4 12

20 28

3 11

19 27

2 10

18 26
1 9

17 25

 OST 0 OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7

Figure 5(a): Conforming Distribution

Figure 5(b) shows how the same data would be distributed

by Y-Lib to create the one-to-one OST pattern. As can be seen,

the data is rearranged to reflect the way it is striped across the

individual OSTs, resulting in each process having to

communicate with only a single OST.

Figure 5(b): The one-to-one OST pattern

It is interesting to consider the trade-offs in these two

approaches. When the data is redistributed to the conforming

distribution, each process can write its data to disk in a single,

contiguous, I/O operation. However, this creates a great deal

of background activity as the file system client must

communicate with all OSTs. In the one-to-one OST

distribution, there is significantly less contention for system

resources, but each process must perform a (potentially) large

number of small I/O requests, with a disk seek between each

such request.

Thus the relative performance of the two approaches is

determined by the particular overhead costs associated with

each. In the following sections, we provide extensive

experimentation showing that the costs associated with

contention for system resources (OSTs, lock managers,

network) significantly dominates the cost of performing

multiple, small, and non-contiguous I/O operations.

IV. EXPERIMENTAL DESIGN

We were interested in the impact of the data aggregation

patterns on the throughput obtained when performing

collective I/O operations in a large-scale Lustre file system.

The Lustre installation we used in this research was Ranger,

located at the Texas Advanced Computing Center (TACC) at

the University of Texas. There are 3,936 SunBlade x6420

blade nodes on Ranger, processors for a total of 62,976 cores.

Each blade is running a 2.6.18.8 x86_64 Linux kernel from

kernel.org. The Lustre parallel file system was built on 72 Sun

x4500 disk servers, each containing 48 SATA drives for an

aggregate storage capacity of 1.73 Petabytes. On the Scratch

file system used in these experiments, there were 50 OSSs,

each of which hosted six OSTs. The bottleneck in the system

was a 1-Gigabyte per second throughput from the OSSs to the

network.

We varied three key parameters in these experiments: The

implementation of the collective I/O operation, the number of

processors that participated in the operation, and the file size.

In particular, we varied the number of processors from 128 to

1024, where each processor wrote one Gigabyte of data to

disk. Thus the file size varied between 128 Gigabytes and one

Terabyte. We kept the number of OSTs constant at 128, and

maintained a stripe size of one MB. Each data point represents

the mean value of 50 trials taken over a five-day period.

We also investigated three different factors that impacted

the performance of the collective I/O operations, which we

discuss in turn.

C. Data Aggregation Patterns with Redistribution

In this set of experiments, we assigned the data to the

processors in a way that required it to be redistributed to reach

the desired aggregation pattern. Thus, in the case of MPI-IO,

we set a file view for each process that specified the one-to-

one OST pattern, and set the hint to use two-phase I/O to carry

out the write operation. Similarly, we assigned the data to the

processors in the conforming distribution, and made a

collective call to Y-Lib to redistribute the data to the one-to-

one OST pattern. Once Y-Lib completed the data

redistribution, it wrote the data to disk using independent (but

concurrent) write operations.

D. Data Aggregation Patterns without Redistribution

The next set of experiments assumed the data was already

assigned to the processors in the required distribution. Thus in

the case of MPI-IO, the processors performed the collective

MPI_File_write_at_all operation, and passed to the function a

contiguous one Gigabyte data buffer.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P0 P1 P2 P3

OST 1 OST 2 OST 3 OST 4

OST 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P0

P1

P2

P3

OST 2 OST 3 OST 4

In the case of Y-Lib, the data redistribution phase was not

executed, and each process performed the independent write

operations assuming the data was already in the one-to-one

pattern.

E. MPI-IO Write Strategies

The final set of experiments was designed to determine if

we could improve the performance of MPI itself by forcing it

to use the one-to-one OST pattern with independent writes.

We accomplished this by setting a file view specifying the

one-to-one OST pattern, and disabling both two-phase I/O and

data sieving. We then compared the performance of this

approach with that of MPI-IO assuming the conforming

distribution, and MPI-IO assuming the one-to-one OST

distribution using two-phase I/O.

V. EXPERIMENTAL RESULTS

The experimental results are shown in Figures 6, 7, and 8.

Figure 6 shows the throughput obtained when Y-Lib started

with the data in the conforming distribution, used message

passing to put it into the one-to-one OST distribution, and

then wrote the data to disk with multiple, POSIX write

operations. This is compared to the throughput obtained by the

MPI-IO MPI_File_write_all operation when the data is

initially placed in the one-to-one OST pattern. As can be seen,

Y-Lib improves I/O performance by up to a factor of ten. This

is particularly impressive given that each process performed

1024 independent write operations.

Figure 6: Data aggregation patterns without redistribution

Figure 7 shows the throughput obtained assuming the

optimal data distribution for each approach. That is, the data

was in the conforming distribution for MPI-IO, and in the

one-to-one OST distribution for Y-Lib. Thus neither approach

required the redistribution of data. As can be seen, the one-to-

one pattern, which required 1024 independent write operations,

significantly outperformed the MPI_File_write_at_all

operation, where each process wrote a contiguous one

Gigabyte buffer to disk. In this case, Y-Lib improved

performance by up to a factor of three.

Figure 7:Data aggregation patterns with redistribution

Figure 8 depicts the performance of three different MPI-IO

collective operations. It includes the two previously described

approaches, and compares them with the performance of MPI-

IO when it was forced to use independent writes. As can be

seen, we were able to increase the performance of MPI-IO

itself by over a factor of two, by forcing it to use the one-to-

one OST pattern.

Figure 8: Comparison of MPI write strategies

VI. DISCUSSION OF RESULTS

These results strongly support the hypothesis that the poor

performance of MPI-IO in a Lustre file system environment is
due in large part to the contention for system resources caused
by the all-to-all communication pattern between processors and
OSTs. This phenomenon arises because of the underlying
assumption that parallel I/O performance is optimised by
distributing data to achieve the conforming distribution, and
writing the data to disk in a small number of large, contiguous
I/O operations.

These results also lend strong support to other studies on
Lustre showing that maximum performance is obtained when
individual processes write to independent files concurrently [4,
21]. Further, it helps explain the commonly held belief of (at
least some) Lustre developers that parallel I/O is not necessary
in a Lustre environment, and does little to improve performance
[2]. Based on this research, we now believe that parallel I/O is,
in fact, critical to high performance I/O in Lustre, but must be
done in a way that is more closely aligned with the Lustre object-
based storage architecture.

VII. RELATED WORK

The most closely related work is from Yu et al. [21], who

implemented the MPI-IO collective write operations using the

Lustre file-join mechanism. In this approach, the I/O

processes write separate, independent files in parallel, and

then merge these files using the Lustre file-join mechanism.

They showed that this approach significantly improved the

performance of the collective write operation, but that the

reading of a previously joined file resulted in low I/O

performance. As noted by the authors, correcting this poor

performance will require an optimization of the way a joined

file’s extent attributes are managed. The authors also provide

an excellent performance study of MPI-IO on Lustre.

The approach we are pursuing does not require multiple

independent writes to separate files, but does limit the number

of Object Storage Targets (OST) with which a given process

communicates. This maintains many of the advantages of

writing to multiple independent files separately, but does not

require the joining of such files. The performance analysis

presented in this paper complements and extends the analysis

performed by Yu et al.

Larkin and Fahey [12] provide an excellent analysis of

Lustre’s performance on the Cray XT3/XT4, and, based on

such analysis, provide some guidelines to maximize I/O

performance on this platform. They observed, for example,

that to achieve peak performance it is necessary to use large

buffer sizes, to have at least as many IO processes as OSTs,

and, that at very large scale (i.e., thousands of clients), only a

subset of the processes should perform I/O. While our

research reaches some of the same conclusions on different

architectural platforms, there are two primary distinctions.

First, our research is focused on understanding of the poor

performance of MPI-IO (or, more particularly, ROMIO) in a

Lustre environment, and on implementing a new ADIO driver

for object-based file systems such as Lustre. Second, our

research is investigating both contiguous and non-contiguous

access patterns while this related work focuses on contiguous

access patterns only.

In [14], it was shown that aligning the data to be written

with the basic striping pattern improves performance. They

also showed that it was important to align on lock boundaries.

This is consistent with our analysis, although we expand the

scope of the analysis significantly to study the algorithms used

by MPI-IO (ROMIO) and determine (at least some of) the

reasons for sub-optimal performance.

VIII. CONCLUSIONS AND FUTURE RESEARCH

This research was motivated by the fact that MPI-IO has

been shown to perform poorly in a Lustre environment, the
reasons for which have been heretofore largely unknown. We
hypothesized that the problem was related to the high overhead
associated with writing large, contiguous blocks of data to the
file system, which can require the multiplexing of many
concurrent communication channels. We implemented a new
approach to collective I/O operations in Lustre that significantly
reduced such contention. This new approach was embodied in a
user-level library termed Y-Lib, which was shown to outperform
the current implementation of collective I/O operations by up
to a factor of ten.

These results were obtained on one large-scale Lustre
installation, and current research is focusing on implementing
and evaluating Y-Lib on other Lustre file systems. If, as we
expect, the results are consistent across several installations, we
will implement the new data aggregation patterns in an ADIO
driver that is optimised for Lustre file systems.

Another focus of current research is to develop a better

understanding of the factors relating to the high overhead

costs of communicating with multiple OSTs. Network

contention and lock protocol processing are two likely causes,

but there may be other contributing factors that not currently

known.

REFERENCE

[1]. Cluster File Systems, Inc.

 http://www.clustrefs.com

[2]. Frequently Asked Questions.

[3]. I/O Performance Project

 http://wiki.lustre.org/index.php?title=IOPerformanceProjec

[4]. Lustre: scalable, secure, robust, highly-available cluster file

system. An offshoot of AFS, CODA, and Ext2.

 www.lustre.org/

[5]. MPI-2: Extensions to the Message-Passing Interface.

Message Passing Interface Forum

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-

report.html

[6]. MPICH2 Home Page

 http://www.mcs.anl.gov/mpi/mpich

[7]. Scalable Implementation for Overlapping File Access in

MPI-IO

 http://www.ece.northwestern.edu/~wkliao/Sandia/

[8]. The Panasas Home Page.

http://www.panasas.com

[9]. Avery Ching, Choudhary, A., Coloma, K., Liao, W.-k., et

al., Noncontiguous I/O Accesses through MPI-IO. In the

Proceedings of the Third International Symposium on

Cluster Computing and the Grid (CCGrid), (2002), 104-

111.

[10]. Bramm, P.J. The Lustre Storage Architecture

[11]. Isaila, F. and Tichy, W.F., View I/O: improving the

performance of non-contiguous I/O. In the Proceedings of the

IEEE Cluster Computing Conference, (Hong Kong).

[12]. Larkin, J. and Fahey, M. Guidelines for Efficient Parallel

I/O on the Cray XT3/XT4 CUG 2007, 2007.

[13]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A., et al.,

Iproving MPI Independent Write Performance Using A Two-
Stage Write-Behind Buffering Method. . In the Proceedings of

the Next Generation Software (NGS) Workshop, (2007).

[14]. Liao, W.-k., Ching, A., Coloma, K., Choudhary, A., et al.,

An Implementation and Evaluation of Client-Side File Caching
for MPI-IO. In the Proceedings of the International Parallel and

Distried Processing Symposium (IPDPS '07), (2007).

[15]. Schmuck, F. and Haskin, R., GPFS: A shared-disk file

system for large computing clusters. . In the Proceedings of the

Conference on File and Storage Technologies, (IBM Almaden

Research Center, San Jose, California).

[16]. Thakur, R., Gropp, W. and Lusk, E., An Abstract-Device

Interface for Implementing Portable Parallel-I/O Interfaces. In

the Proceedings of the Proc. of the 6th Symposium on the

Frontiers of Massively Parallel Computation.

[17]. Thakur, R., Gropp, W. and Lusk, E., Data Sieving and

Collective I/O in ROMIO. In the Proceedings of the Proc. of the

7th Symposium on the Frontiers of Massively Parallel

Computation, 182-189.

[18]. Thakur, R., Gropp, W. and Lusk, E., On Implementing

MPI-IO Portably and with High Performance. In the Proceedings

of the Proc. of the Sixth Workshop on I/O in Parallel and

Distributed Systems, 23-32.

[19]. Thakur, R., Gropp, W. and Lusk, E. Optimizing

Noncontiguous Accesses in MPI-IO. Parallel Computing, 28 (1).

83-105. January, 2002.

[20]. Thakur, R., Ross, R. and Gropp, W. Users Guide for

ROMIO: A High-Performance, Portable MPI-IO Implementation,

Technical Memorandum ANL/MCS-TM-234, Mathematics and

Computer Science Division, Argonne National Laboratory,

Revised May 2004.

[21]. Yu, W., Vetter, J., Canon, R.S. and Jiang, S., Exploiting

Lustre File Joining for Effective Collective I/O In the

Proceedings of the Seventh IEEE International Symposium on

Cluster Computing and the Grid (CCGrid '07), (2007).

