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Abstract—It is widely known that MPI-IO performs poorly in a 

Lustre file system environment, although the reasons for such 

performance are currently not well understood. The research 

presented in this paper strongly supports our hypothesis that MPI-IO 

performs poorly in this environment because of the fundamental 

assumptions upon which most parallel I/O optimizations are based. 

In particular, it is almost universally believed that parallel I/O 

performance is optimized when aggregator processes perform large, 

contiguous I/O operations in parallel. Our research shows that this 

approach generally provides the worst performance in a Lustre 

environment, and that the best performance is often obtained when 

the aggregator processes perform a large number of small, non-

contiguous I/O operations.  

In this paper, we first demonstrate and explain these non-intuitive 

results. We then present a user-level library, termed Y-lib, which 

redistributes data in a way that conforms much more closely with the 

Lustre storage architecture than does the data redistribution pattern 

employed by MPI-IO. We then provide experimental results showing 

that Y-lib can increase performance between 300% and 1000% 

depending on the number of aggregator processes and file size. 

Finally, we cause MPI-IO itself to use our data redistribution scheme, 

and show that doing so results in an increase in performance of a 

similar magnitude when compared to the current MPI-IO data 

redistribution algorithms. 

I. INTRODUCTION 

 
Large-scale computing clusters are being increasingly 

utilized to execute large, data-intensive applications in several 

scientific domains. Such domains include high-resolution 

simulation of natural phenomenon, large-scale image analysis, 

climate modelling, and complex financial modelling. The I/O 

requirements of such applications can be staggering, ranging 

from terabytes to petabytes, and managing such massive data 

sets has become a significant bottleneck in parallel application 

performance.  

This issue has led to the development of powerful parallel 

file systems that can provide tremendous aggregate storage 

capacity with highly concurrent access to the underlying data 

(e.g., Lustre [1], GPFS [15], Panasas [7]). This issue has also 

led to the development of parallel I/O interfaces with high-

performance implementations that can interact with the file 

system API to optimise access to the underlying storage. An 

important combination of file system/parallel I/O interface is 

Lustre, an object-based, parallel file system developed for 

extreme-scale computing clusters, and MPI-IO [5], the most 

widely-used parallel I/O API. The problem, however, is that 

there is currently no implementation of the MPI-IO standard 

that is optimised for the Lustre file system, and the 

performance of current implementations is, by and large, quite 

poor [3, 12, 21]. Given the wide spread use of MPI-IO, and 

the expanding utilization of the Lustre file system, it is critical 

to provide an MPI-IO implementation that can provide high-

performance, scalable I/O to MPI applications executing in 

this environment.  

There are two key challenges associated with achieving 

high performance with MPI-IO in a Lustre environment. First, 

Lustre exports only the POSIX file system API, which was 

not designed for a parallel I/O environment and provides little 

support for parallel I/O optimisations. This has led to the 

development of approaches (or “workarounds”) that can 

circumvent (at least some of) the performance problems 

inherent in POSIX-based file systems (e.g., two-phase I/O [17, 

18], and data-sieving[20]). The second problem is that the 

assumptions upon which these optimisations are based simply 

do not hold in a Lustre environment. 

The most important and widely held assumption, and the 

one upon which most collective I/O optimisations are based, is 

that parallel I/O performance is optimised when application 

processes perform a small number of large, contiguous (non-

overlapping) I/O operations concurrently. In fact, this is the 

assumption upon which collective I/O operations are based.  

The research presented in this paper, however, shows that this 

assumption can lead to very poor I/O performance in a Lustre 

file system environment.  Moreover, we provide a large set of 

experimental results showing that the antithesis of this 

approach, where each aggregator process performs a large 

number of small (non-contiguous) I/O operations, can, when 

properly aligned with the Lustre storage architecture, provide 

significantly improved parallel I/O performance.  

In this paper, we document and hypothesize the reasons for 

these non-intuitive results. In particular, we believe that it is 

the data aggregation patterns currently utilized in collective 

I/O operations, which result in large, contiguous I/O 

operations, that are largely responsible for the poor MPI-IO 

performance observed in Lustre file systems. We believe this 



is problematic because it redistributes application data in a 

way that conforms poorly to Lustre’s object-based storage 

architecture. Based on these ideas, we present an alternative 

approach, embodied in a user-level library termed Y-Lib, 

which, in a collective I/O operation, redistributes data in a 

way that more closely conforms to the Lustre object-based 

storage architecture. We provide experimental results, taken at 

a large-scale Lustre installation, showing that this alternative 

approach to collective I/O operations does, in fact, provide 

significantly enhanced parallel I/O performance.  

This research is performed within the context of ROMIO 

[x], a high-performance implementation of the MPI-IO 

standard developed and maintained at Argonne National 

Laboratory. There are three reasons for choosing ROMIO as 

the parallel I/O implementation with which we compare our 

approach:  It is generally regarded as the most widely used 

implementation of MPI-IO, it is highly portable, and it 

provides a powerful parallel I/O infrastructure that can be 

leveraged in this research.  

In this paper, we investigate the performance of collective 

write operations implemented in ROMIO on a large-scale 

Lustre installation at the University of Texas Advanced 

Computing Center.  We focus on the collective write 

operations because they represent one of the most important 

parallel I/O optimisations defined in the MPI-IO standard and 

because they have been identified as exhibiting particularly 

poor performance in Lustre file systems.  

This paper makes two primary contributions. First, it 

increases our understanding of the interactions between 

collective I/O optimisations in a very important 

implementation of the MPI-IO standard, the underlying 

assumptions upon which these optimisations are based, and 

the Lustre architecture. Second, it shows how the 

implementation of collective I/O operations can be more 

closely aligned with Lustre’s object-based storage architecture, 

resulting in up to a 1500% increase in performance. We 

believe this paper will be of interest to a large segment of the 

high-performance computing community given the 

importance of both MPI-IO and Lustre to large-scale, 

scientific computing.  

The rest of this paper is organized as follows. In Section 2, 

we provide background information on MPI-IO and collective 

I/O operations. In Section 3, we discuss the Lustre object-

based storage architecture. In Section 4, we provide our 

experimental design, and, in Section 5, we provide our 

experimental results. In Section 6, we provide a discussion of 

our results, and provide our conclusions in Section 7.  

 

Background 
 

The I/O requirements of parallel, data-intensive 

applications have become the major bottleneck in many areas 

of scientific computing. Historically, the reason for such poor 

performance has been the I/O access patterns exhibited by 

scientific applications. In particular, it has been well 

established that each process tends to make a large number of 

small I/O requests, incurring the high overhead of performing 

I/O across a network with each such request [9, 11, 19]. 

However, it is often the case that in the aggregate, the 

processes are performing large, contiguous I/O operations, 

which historically have made much better use of the parallel 

I/O hardware.  

MPI-IO [5], the I/O component of the MPI2 standard, was 

developed (in part at least) to take advantage of such global 

information to enhance parallel I/O performance. One of the 

most important mechanisms through which such global 

information can be obtained and leveraged is a set of 

collective I/O operations, where each process provides to the 

implementation information about its individual I/O request. 

The rich and flexible parallel I/O API defined in MPI-IO 

facilitates collective operations by enabling the individual 

processes to express complex parallel I/O access patterns in a 

single request (e.g., non-contiguous access patterns). Once the 

implementation has a picture of the global I/O request, it can 

combine the individual requests and submit them in a way that 

optimizes the particular parallel I/O subsystem.  

It is generally agreed that the most widely used 

implementation of the MPI-IO standard is ROMIO [20], 

which is integrated into the MPICH2 MPI library developed 

and maintained at Argonne National Laboratory. ROMIO 

provides key optimizations for enhanced performance, and is 

implemented on a wide range of architectures and file systems.  

The portability of ROMIO stems from an internal layer 

called ADIO [16] upon which ROMIO implements the MPI-

IO interface. ADIO implements the file system dependent 

features, and is thus implemented separately for each file 

system (see Figure 1).  
 

 

Figure 1: ROMIO is implemented on top of ADIO, which is implemented 
separately for each file system. 

 

ROMIO implements the collective I/O operations using a 

technique termed two-phase I/O [23, 25]. Consider a 

collective write operation. In the first phase, the processes 

exchange their individual I/O requests to determine the global 

request. The processes then use inter-process communication 

to re-distribute the data to a set of aggregator processes. The 

data is re-distributed such that each aggregator process has a 

large, contiguous chunk of data that can be written to the file 

system in a single operation. The parallelism comes from the 

aggregator processes performing their writes concurrently. 

This is successful because it is significantly more expensive to 

 
ROMIO 

ADIO 

POSIX PVFS GPFS Lustre OBFS 



write to the file system than it is to perform inter-process 

communication.  

     To help clarify these ideas, consider the following 

example. Assume an SPMD computation where each process 

computes over a different region of a two-dimensional file (16 

x 16 array of integers). Further, assume there are four compute 

nodes, four I/O nodes, and that each process has a 4 x 4 sub-

array. The array is stored on disk in row-major order with a 

stripe unit equal to one row of the array. Also, the array is 

distributed among the processes in a block-block distribution 

as shown in Figure 2.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assume each process is ready to write its data to disk and 

enters into a collective write operation. In the first phase, the 

processes exchange information about their individual 

requests to determine the aggregate I/O request, and determine 

the best strategy for writing the data to disk. In this case, it is 

determined to be optimal for each process to write a single 

row of the array to disk in parallel. To implement this strategy, 

process P0 must send array elements (1, 0) and (1, 1) to 

process P1, and must receive elements (0, 2) and (0, 3) from 

process P1. The exchanges between processes P2 and P3 are 

similar. Once each process receives the data it needs, they 

write their portion of the data to disk in one I/O request in 

parallel (note that in this example each process is an 

aggregator).  

We further explore collective write operations in the 

sections that follow. 
 

  

II. LUSTRE ARCHITECTURE 

Lustre consists of three primary components: file system 

clients (that request I/O services), object storage servers 

(OSSs) (that provide I/O services), and meta-data servers that 

manage the name space of the file system. Each OSS can 

support multiple Object Storage Targets (OSTs) that handle 

the duties of object storage and management. The scalability 

of Lustre is derived from two primary sources. First, file meta-

data operations are de-coupled from file I/O operations. The 

meta-data is stored separately from the file data, and once a 

client has obtained the meta-data it communicates directly 

with the OSSs in subsequent I/O operations. This provides 

significant parallelism because multiple clients can interact 

with multiple storage servers in parallel. The second driver for 

scalable performance is the striping of files across multiple 

OSTs, which provides parallel access to shared files by 

multiple clients.  

Lustre provides APIs allowing the application to set the 

stripe size, the number of OSTs across which the file will be 

striped (the stripe width), the index of the OST in which the 

first stripe will be stored, and to retrieve the striping 

information for a given file. The stripe size is set when the file 

is opened and cannot be modified once set. Lustre assigns 

stripes to OSTs in a round-robin fashion, beginning with the 

designated OST index.  

The POSIX file consistency semantics are enforced through 

a distributed locking system, where each OST acts as a lock 

server for the objects it controls [10]. The locking protocol 

requires that a lock be obtained before any file data can be 

modified or written into the client-side cache. While the 

Lustre documentation states that the locking mechanism can 

be disabled for higher performance [4], we have never 

observed such improvement by doing so.  
 

A. Known issues with Parallel I/O on Lustre 

 
Previous research efforts with parallel I/O on the Lustre file 

system have shed some light on factors contributing to the 

poor performance of MPI-IO, including the problems caused 

by I/O accesses that are not aligned on stripe boundaries [13, 

14]. Figure 2 helps to illustrate the problem that arises when 

I/O accesses cross stripe boundaries. Assume the two 

processes are writing to non-overlapping sections of the file; 

however because the requests are not aligned on stripe 

boundaries, both processes are accessing different regions of 

stripe 1. Because of Lustre’s locking protocol, each process 

must acquire the lock associated with the stripe, which results 

in unnecessary lock contention. Thus the writes to stripe 1 

must be serialized, resulting in suboptimal performance. 
 

Figure 2: Crossing Stripe Boundaries with Lustre 
 

An ADIO driver for Lustre has recently been added to 

ROMIO, appearing in the 1.0.7 release of MPICH2 [6]. This 

new Lustre driver adds support via hints for user settable 

features such as Lustre striping and direct I/O. In addition, the 

driver insures that disk accesses are aligned on Lustre stripe 

boundaries.  
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Figure 2. Example system with (a) four compute processors and four I/O 
processors and (b) a 4x4 array partitioned in block-block order.  



 

B. Data Aggregation Patterns 

 
While the issues addressed by the new ADIO driver are 

necessary for high-performance parallel I/O in Lustre, they are 

not, in our view, sufficient. This is because they do not 

address the problems arising from multiple aggregator 

processes making large, contiguous I/O requests concurrently. 

This point may be best explained through a simple example.  

Consider a two-phase collective write operation with the 

following parameters: four aggregator processes, a 32 MB file, 

a stripe size of 1 MB, eight OSTs, and a stripe width of eight. 

Assume the four processes have completed the first phase of 

the collective write operation, and that each process is ready 

to write a contiguous eight MB block to disk. Thus process P0 

will write stripes 0 – 7, process P1 will write stripes 8 – 15, 

and so forth. This communication pattern is shown in Figure 3 

below.  

Two problems become apparent immediately. First, every 

process is communicating with every OSS. Second, every 

process must obtain eight locks. Thus there is significant 

communication overhead (each process and each OSS must 

multiplex four separate, concurrent communication channels), 

and there is contention at each lock manager for locking 

services (but not for the locks themselves). While this is a 

trivial example, one can imagine significant degradation in 

performance as the file size, number of processes, and number 

of OSTs becomes large. Thus a primary flaw in the 

assumption that performing large, contiguous I/O operations 

provides the best parallel I/O performance is that it does not 

account for the contention of file system and network 

resources. 

  

Figure 3: Communication pattern for two-phase I/O with Lustre. 

 

III. DATA REDISTRIBUTION WITH Y-LIB 

The aggregation pattern shown in Figure 3 is what we term 

an all-to-all OST pattern because it involves all aggregator 

processes communicating will all of the OSTs. The simplest 

solution is to limit the number of OSTs across which a file is 

striped. In fact, the recommended (and default) stripe width is 

four. While this certainly reduces contention, it also severely 

limits the parallelism of file accesses, which, in turn, limits 

parallel I/O performance. However, we believe it is possible 

to both reduce contention and maintain a high degree of 

parallelism, by implementing an alternative data aggregation 

pattern. This is accomplished via a user-level library termed 

Y-Lib. 

The basic idea behind Y-Lib is to minimize the number of 

OSTs with which a given aggregator process communicates. 

In particular, it seeks to redistribute data in what we term a 

“one-to-one” OST pattern, where the data is arranged such 

that each aggregator process communicates with exactly one 

OST. Once the data is redistributed in this fashion, each 

process performs a series of non-contiguous I/O operations (in 

parallel) to write the data to disk. We provide a simple 

example to help illustrate these ideas.  

Assume there are four application processes that share a 16 

MB file with a stripe size of 1 MB and a stripe width of four 

(i.e., it is striped across four OSTs). Given these parameters, 

Lustre distributes the 16 stripes across the four OSTs in a 

round-robin pattern as shown in Figure 4. Thus stripes 0, 4, 8, 

and 12 are stored on OST 0, stripes 1, 5, 9, and 13 are stored 

on OST 1, and so forth. 

 
Figure 4: Lustre File Layout 

Figure 5(a) shows the data blocks residing on the four 

processes in a way that is termed the conforming distribution 

where each process can write its data to disk in a single, 

contiguous I/O operation. This is the distribution pattern that 

results from the first phase of ROMIO’s collective write 

operations, based on the assumption that performing large, 

contiguous I/O operations provides optimal parallel I/O 

performance. 
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Figure 5(a): Conforming Distribution 

Figure 5(b) shows how the same data would be distributed 

by Y-Lib to create the one-to-one OST pattern. As can be seen, 

the data is rearranged to reflect the way it is striped across the 

individual OSTs, resulting in each process having to 

communicate with only a single OST. 

 
Figure 5(b): The one-to-one OST pattern 

It is interesting to consider the trade-offs in these two 

approaches. When the data is redistributed to the conforming 

distribution, each process can write its data to disk in a single, 

contiguous, I/O operation. However, this creates a great deal 

of background activity as the file system client must 

communicate with all OSTs. In the one-to-one OST 

distribution, there is significantly less contention for system 

resources, but each process must perform a (potentially) large 

number of small I/O requests, with a disk seek between each 

such request.  

Thus the relative performance of the two approaches is 

determined by the particular overhead costs associated with 

each. In the following sections, we provide extensive 

experimentation showing that the costs associated with 

contention for system resources (OSTs, lock managers, 

network) significantly dominates the cost of performing 

multiple, small, and non-contiguous I/O operations.  

 

IV. EXPERIMENTAL DESIGN 

 
We were interested in the impact of the data aggregation 

patterns on the throughput obtained when performing 

collective I/O operations in a large-scale Lustre file system. 

The Lustre installation we used in this research was Ranger, 

located at the Texas Advanced Computing Center (TACC) at 

the University of Texas. There are 3,936 SunBlade x6420 

blade nodes on Ranger,  processors for a total of 62,976 cores.  

Each blade is running a 2.6.18.8 x86_64 Linux kernel from 

kernel.org. The Lustre parallel file system was built on 72 Sun 

x4500 disk servers, each containing 48 SATA drives for an 

aggregate storage capacity of 1.73 Petabytes. On the Scratch 

file system used in these experiments, there were 50 OSSs, 

each of which hosted six OSTs. The bottleneck in the system 

was a 1-Gigabyte per second throughput from the OSSs to the 

network.  

We varied three key parameters in these experiments: The 

implementation of the collective I/O operation, the number of 

processors that participated in the operation, and the file size. 

In particular, we varied the number of processors from 128 to 

1024, where each processor wrote one Gigabyte of data to 

disk. Thus the file size varied between 128 Gigabytes and one 

Terabyte. We kept the number of OSTs constant at 128, and 

maintained a stripe size of one MB. Each data point represents 

the mean value of 50 trials taken over a five-day period.  

We also investigated three different factors that impacted 

the performance of the collective I/O operations, which we 

discuss in turn. 

 

C. Data Aggregation Patterns with Redistribution 

 

In this set of experiments, we assigned the data to the 

processors in a way that required it to be redistributed to reach 

the desired aggregation pattern. Thus, in the case of MPI-IO, 

we set a file view for each process that specified the one-to-

one OST pattern, and set the hint to use two-phase I/O to carry 

out the write operation. Similarly, we assigned the data to the 

processors in the conforming distribution, and made a 

collective call to Y-Lib to redistribute the data to the one-to-

one OST pattern. Once Y-Lib completed the data 

redistribution, it wrote the data to disk using independent (but 

concurrent) write operations.  

 

D. Data Aggregation Patterns without Redistribution 

 

The next set of experiments assumed the data was already 

assigned to the processors in the required distribution. Thus in 

the case of MPI-IO, the processors performed the collective 

MPI_File_write_at_all operation, and passed to the function a 

contiguous one Gigabyte data buffer.  
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In the case of Y-Lib, the data redistribution phase was not 

executed, and each process performed the independent write 

operations assuming the data was already in the one-to-one 

pattern.  

 

E. MPI-IO Write Strategies 

 

The final set of experiments was designed to determine if 

we could improve the performance of MPI itself by forcing it 

to use the one-to-one OST pattern with independent writes. 

We accomplished this by setting a file view specifying the 

one-to-one OST pattern, and disabling both two-phase I/O and 

data sieving. We then compared the performance of this 

approach with that of MPI-IO assuming the conforming 

distribution, and MPI-IO assuming the one-to-one OST 

distribution using two-phase I/O.  

V. EXPERIMENTAL RESULTS 

 

The experimental results are shown in Figures 6, 7, and 8. 

Figure 6 shows the throughput obtained when Y-Lib started 

with the data in the conforming distribution, used message 

passing to put it into the one-to-one OST distribution, and 

then wrote the data to disk with multiple, POSIX write 

operations. This is compared to the throughput obtained by the 

MPI-IO MPI_File_write_all operation when the data is 

initially placed in the one-to-one OST pattern. As can be seen, 

Y-Lib improves I/O performance by up to a factor of ten. This 

is particularly impressive given that each process performed 

1024 independent write operations.  

 
Figure 6: Data aggregation patterns without redistribution 

Figure 7 shows the throughput obtained assuming the 

optimal data distribution for each approach. That is, the data 

was in the conforming distribution for MPI-IO, and in the 

one-to-one OST distribution for Y-Lib. Thus neither approach 

required the redistribution of data. As can be seen, the one-to-

one pattern, which required 1024 independent write operations, 

significantly outperformed the MPI_File_write_at_all 

operation, where each process wrote a contiguous one 

Gigabyte buffer to disk. In this case, Y-Lib improved 

performance by up to a factor of three.  

 
Figure 7:Data aggregation patterns with redistribution 

Figure 8 depicts the performance of three different MPI-IO 

collective operations. It includes the two previously described 

approaches, and compares them with the performance of MPI-

IO when it was forced to use independent writes. As can be 

seen, we were able to increase the performance of MPI-IO 

itself by over a factor of two, by forcing it to use the one-to-

one OST pattern. 

 
Figure 8: Comparison of MPI write strategies 

VI.  DISCUSSION OF RESULTS 

 
These results strongly support the hypothesis that the poor 

performance of MPI-IO in a Lustre file system environment is 
due in large part to the contention for system resources caused 
by the all-to-all communication pattern between processors and 
OSTs. This phenomenon arises because of the underlying 
assumption that parallel I/O performance is optimised by 
distributing data to achieve the conforming distribution, and 
writing the data to disk in a small number of large, contiguous 
I/O operations.  



These results also lend strong support to other studies on 
Lustre showing that maximum performance is obtained when 
individual processes write to independent files concurrently [4, 
21]. Further, it helps explain the commonly held belief of (at 
least some) Lustre developers that parallel I/O is not necessary 
in a Lustre environment, and does little to improve performance 
[2]. Based on this research, we now believe that parallel I/O is, 
in fact, critical to high performance I/O in Lustre, but must be 
done in a way that is more closely aligned with the Lustre object-
based storage architecture.  

 

VII. RELATED WORK 

 
The most closely related work is from Yu et al. [21], who 

implemented the MPI-IO collective write operations using the 

Lustre file-join mechanism. In this approach, the I/O 

processes write separate, independent files in parallel, and 

then merge these files using the Lustre file-join mechanism. 

They showed that this approach significantly improved the 

performance of the collective write operation, but that the 

reading of a previously joined file resulted in low I/O 

performance. As noted by the authors, correcting this poor 

performance will require an optimization of the way a joined 

file’s extent attributes are managed.  The authors also provide 

an excellent performance study of MPI-IO on Lustre.  

The approach we are pursuing does not require multiple 

independent writes to separate files, but does limit the number 

of Object Storage Targets (OST) with which a given process 

communicates. This maintains many of the advantages of 

writing to multiple independent files separately, but does not 

require the joining of such files. The performance analysis 

presented in this paper complements and extends the analysis 

performed by Yu et al.  

Larkin and Fahey [12] provide an excellent analysis of 

Lustre’s performance on the Cray XT3/XT4, and, based on 

such analysis, provide some guidelines to maximize I/O 

performance on this platform. They observed, for example, 

that to achieve peak performance it is necessary to use large 

buffer sizes, to have at least as many IO processes as OSTs, 

and, that at very large scale (i.e., thousands of clients), only a 

subset of the processes should perform I/O. While our 

research reaches some of the same conclusions on different 

architectural platforms, there are two primary distinctions. 

First, our research is focused on understanding of the poor 

performance of MPI-IO (or, more particularly, ROMIO) in a 

Lustre environment, and on implementing a new ADIO driver 

for object-based file systems such as Lustre. Second, our 

research is investigating both contiguous and non-contiguous 

access patterns while this related work focuses on contiguous 

access patterns only.  

In [14], it was shown that aligning the data to be written 

with the basic striping pattern improves performance. They 

also showed that it was important to align on lock boundaries. 

This is consistent with our analysis, although we expand the 

scope of the analysis significantly to study the algorithms used 

by MPI-IO (ROMIO) and determine (at least some of) the 

reasons for sub-optimal performance.  

 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

 
This research was motivated by the fact that MPI-IO has 

been shown to perform poorly in a Lustre environment, the 
reasons for which have been heretofore largely unknown. We 
hypothesized that the problem was related to the high overhead 
associated with writing large, contiguous blocks of data to the 
file system, which can require the multiplexing of many 
concurrent communication channels. We implemented a new 
approach to collective I/O operations in Lustre that significantly 
reduced such contention. This new approach was embodied in a 
user-level library termed Y-Lib, which was shown to outperform 
the current implementation of collective I/O operations by up 
to a factor of ten.  

These results were obtained on one large-scale Lustre 
installation, and current research is focusing on implementing 
and evaluating Y-Lib on other Lustre file systems. If, as we 
expect, the results are consistent across several installations, we 
will implement the new data aggregation patterns in an ADIO 
driver that is optimised for Lustre file systems.  

Another focus of current research is to develop a better 

understanding of the factors relating to the high overhead 

costs of communicating with multiple OSTs. Network 

contention and lock protocol processing are two likely causes, 

but there may be other contributing factors that not currently 

known.  
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