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ABSTRACT 
 
Given the critical nature of communications in 
computational Grids it is important to develop 
efficient, intelligent, and adaptive 
communication mechanisms. An important 
milestone on that path is the development of 
classification mechanisms that can distinguish 
between causes of data loss in cluster and Grid 
environments. In this paper, we investigate one 
promising approach to developing such 
classification mechanisms based on the analysis 
of what may be termed packet-loss signatures 
that describe the patterns of packet loss in the 
current transmission window. We analyze these 
signatures using complexity theory to learn 
about their underlying structure (or lack 
thereof), and are mapping the relationship 
between the complexity metrics and the system 
conditions responsible for their generation. We 
show that complexity measures are an excellent 
metric upon which a classification mechanism 
can be built. Further, we show how such a 
classification mechanism can be built based on 
the application of Bayesian statistics.  
 
 
Introduction 
 
Computational Grids create large-scale 
distributed systems by connecting geographically 
distributed computational and data-storage 
facilities via high-performance networks. Such 
systems, which can harness and bring to bear 
tremendous computational resources on a single 
large-scale problem, are becoming an 
increasingly important component of the national 
computational infrastructure. At the heart of such 
systems is the high-performance communication 
infrastructure that allows the geographically 
distributed computational elements to function as 
a single (and tightly-coupled) computational 
platform.  Given the importance of Grid 
technologies to the scientific community, 
research projects aimed at making the 

communication system more efficient, 
intelligent, and adaptive are both timely and 
critical.  
     An important milestone on the path to such 
next-generation communication systems is the 
development of a classification mechanism that 
can distinguish between causes of data loss in 
current cluster/Grid environments. The idea is to 
use the classification mechanism to respond to 
data loss in a way that is appropriate for the 
particular set of system dynamics responsible for 
generating such loss. Given this capability, the 
communication system can take full advantage 
of the underlying bandwidth when system 
conditions permit, can back off in response to 
observed (or predicted) contention within the 
network, and can accurately distinguish between 
these two situations.  
     This research is addressing the issue of 
identifying the root cause(s) of data loss as 
observed by a high-performance data transfer 
system during the course of its execution. The 
approach we are pursuing is to analyze what may 
be termed packet-loss signatures, which show 
the distribution (or pattern) of those packets that 
successfully traversed the end-to-end 
transmission path and those that did not. These 
signatures are collected by the receiver and 
delivered to the sender upon request. Thus the 
packet-loss signatures are essentially large 
selective-acknowledgment packets, and are so 
named based on a growing set of experimental 
results [14, 15] showing that different classes of 
error mechanisms have different “signatures”. 
We are applying complexity theory to the 
problem of learning the underlying structure (or 
lack thereof) of these signatures, and mapping 
the relationship between such underlying 
structure and the system conditions responsible 
for its generation. Our research has shown that 
complexity measures capture quite well the 
underlying system dynamics, and that 
understanding such dynamics provides 



significant insight into the cause(s) of observed 
data loss.  
         The test-bed for this research is FOBS1: a 
high-performance data transfer system for 
computational Grids developed by the primary 
author [9-12, 25]. FOBS is a UDP-based data 
transfer system that provides reliability through a 
selective-acknowledgment and retransmission 
mechanism. As noted above, it is precisely the 
information contained within the selective-
acknowledgment packets that is collected and 
analyzed by our classification mechanism. 
   Three important factors, whose combination is 
unique among high-performance data transfer 
mechanisms for computational Grids, make 
FOBS an excellent test-bed for this research.  
First, FOBS is an application-level protocol. 
Thus the congestion-control mechanism can 
collect, synthesize, and leverage information 
from a higher-level view than is possible when 
operating at the kernel level. Second, the 
complexity measures can be obtained as a 
function of a constant sending rate. Thus the 
values of the variables collected are (largely) 
unaffected by the behavior of the algorithm 
itself. Third, FOBS is structured as a feedback 
control system. Thus the external data (e.g., the 
complexity measures) can be analyzed at each 
control point, and this data can be used to 
determine the duration of the next control 
interval and the rate at which data will be placed 
onto the network during this interval. We do not 
discuss further the design, implementation, or 
performance of FOBS here. The interested reader 
is directed to [11-13] for detailed discussions on 
these issues.  

In this paper, we focus on distinguishing 
between contention for network resources and 
contention for CPU resources. This distinction is 
important for two reasons. First, contention for 
CPU cycles can be a major contributor to packet 
loss in UDP-based protocols such as FOBS. This 
happens, for example, when the receiver’s 
socket-buffer becomes full, additional data 
bound for the receiver arrives at the host, and the 
receiver is switched out and thus unavailable to 
pull such packets off of the network. To illustrate 
this issue, consider a data transfer with a sending 
rate of one gigabit per second and a packet size 
of 1024 bytes. Given this scenario, a packet will 
arrive at the receiving host every 7.9 micro-
seconds, which is approximately the amount of 
time required to perform a context switch on the 
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TeraGrid systems [1] used in this research (as 
measured by Lmbench [19]).                                                                    

The second reason this distinction is 
important is that data loss resulting from CPU 
contention is completely outside of the network 
domain and should not be interpreted as a 
growing network condition. This opens the door 
for new, less aggressive responses, for this class 
of data loss. 

It is important to point out that we used 
contention at the NIC as a proxy for network 
contention for two reasons: First, while it was 
relatively easy to create contention at the NIC 
level, it was extremely difficult to create 
contention within the 40 gigabit per second 
networks that connect the facilities on the 
TeraGrid. Second, we have collected empirical 
evidence supporting the idea that, at least in 
some cases, the complexity measures taken from 
intermediate gigabit routers (from different 
networks) are quite similar to those measured at 
the NIC [14]. However, the buffer size and 
queuing algorithms at intermediate network 
elements will determine the characteristics of 
packet loss signatures. This is an important issue, 
and is the focus of current research. 

This paper makes two primary 
contributions. First, it provides significant 
experimental data showing that complexity 
measures are quite good at differentiating 
between causes of packet loss (or at least for 
those causes that were studied). This shows that 
there is (at least) one metric that can be used as 
the basis of a highly accurate classification 
mechanism. Second, this research studies the 
statistical characteristics of complexity measures 
as a function of the cause of loss and the loss 
rate. It provides empirical evidence (strongly) 
suggesting that there are as-yet-unknown 
mathematical properties governing the behavior 
of complexity measures. This observation is 
strengthened by the development of simple 
models that fit the observed data very well. Also, 
we show that the behavior of complexity values 
is such that a sophisticated probability model for 
the causes of packet loss can be developed 
through the application of Bayesian statistics. Its 
implementation and evaluation will be the focus 
of future papers.   

The rest of the paper is organized as follows. 
In Section 2, we discuss related research efforts. 
In Section 3, we describe our diagnostic 
methodology in the derivation of complexity 
measures. In Section 4, we describe the 
experimental design. In Section 5, we present the 
experimental results. In Section 6, we discuss the 



application of Bayesian statistics to the problem 
of determining the probability that a given cause 
of data loss is dominant in the light of currently 
observed complexity measures. In Section 7, we 
provide our conclusions. 

 
2     Related Work 
 
The issue of distinguishing between causes of 
data loss has received significant attention within 
the context of TCP for hybrid wired/wireless 
networks (e.g., [3-6, 18, 24]). The idea is to 
distinguish between losses caused by network 
congestion and losses caused by errors in the 
wireless link, and to trigger TCP’s aggressive 
congestion control mechanisms only in the case 
of congestion-induced losses. This ability to 
classify the root cause of data loss, and to 
respond accordingly, has been shown to improve 
the performance of TCP in this network 
environment [3, 18, 23]. These classification 
schemes are based largely on simple statistics on 
observed round-trip times, observed throughput, 
or the inter-arrival time between ACK packets 
[5, 7, 18]. Debate remains, however as to how 
well techniques based on such simple statistics 
can classify loss [18]. Another approach being 
pursued is the use of Hidden Markov Models 
where the states are characterized by the mean 
and standard deviation of the distribution of 
round-trip times [18]. Hidden Markov Models 
have also been used to model network channel 
losses and to make inferences about the state of 
the channel [20].  
  Our research has similar goals, although 
we are developing a finer-grained classification 
system to distinguish between contention at the 
NIC, contention in the network, and contention 
for CPU resources. Also, complexity measures 
of packet-loss signatures appear to be a more 
robust classifier than (for example) statistics on 
round-trip times, and could be substituted for 
such statistics within the mathematical 
frameworks established in these related works. 
Similar to the projects discussed above, we 
separate the issue of classification of root 
cause(s) of data loss from the issue of 
implementing responses based on such 
knowledge.  
     Research into other application-level 
alternatives to TCP is also related (e.g., [2, 21, 
22]). However, none of these projects attempt to 
determine the root cause(s) of observed packet 
loss that is a major focus of our research.  
 
 

3   Diagnostic Methodology 
 
The packet-loss signatures can be analyzed as 
time series data with the objective of identifying 
diagnostics that may be used to characterize 
causes of packet loss. A desirable attribute of a 
diagnostic is that it can describe the dynamical 
structure of the time series. The approach we are 
taking is the application of symbolic dynamics 
techniques, which have been developed by the 
nonlinear dynamics community and are highly 
appropriate for time series of discrete data. As 
discussed below, this approach to classifying 
causes of packet loss works because of the 
differing timescales over which such losses 
occur.   
    In symbolic dynamics [17], the packet-loss 
signature is a sequence of symbols drawn from a 
finite discrete set, which in our case is two 
symbols: 1 and 0.  One diagnostic that quantifies 
the amount of structure in the sequence is 
complexity.  There are numerous ways to 
quantify complexity.  In this discussion, we have 
chosen the hierarchical approach of d’Alessandro 
and Politi [8], which has been applied with 
success to quantify the complexity and 
predictability of time series of hourly 
precipitation data [16].  
   The approach of d’Alessandro and Politi is to 
view the stream of 1s and 0s as a language and 
focus on subsequences (or words) of length n in 
the limit of increasing values of n  (i.e., 
increasing word length). First-order complexity, 
denoted by C1, is a measure of the richness of the 
language’s vocabulary and represents the 
asymptotic growth rate of the number of 
admissible words of fixed length n occurring 
within the string as n becomes large. The 
number of admissible words of length n, denoted 
by Na(n), is simply a count of the number of 
distinct words of length n found in the given 
sequence. For example, the string 0010100 has 
Na(1) = 2 (0,1), Na(2) = 3 (00,01,10), Na(3) = 4 
(001, 010, 101, 100). The first-order complexity 
(C1) is defined as  
 

C1  = 
∞>−n

lim (log2 Na(n)) / n .                       (1)

  
The first-order complexity metric characterizes 
the level of randomness or periodicity in a string 
of symbols. A string consisting of only one 
symbol will have one admissible word for each 
value of n, and will thus have a value of C1=0. A 
purely random string will, in the limit, have a 
value of C1=1.  A string that is comprised of a 



periodic sequence, or one comprising only a few 
periodic sequences, will tend to have low values 
of C1. 
      As noted, a hierarchy of complexity values is 
defined in [8]. The next level of the hierarchy is 
a quantity termed C2 that captures the fact that 
random strings are of lower complexity than 
strings that have rules governing their creation. 
We do not discuss this quantity here because we 
have not yet integrated it into our classification 
mechanism.  
 
3.1  Rational for Complexity Measures 
 
Complexity measures work because of the 
different timescales at which loss events occur. 
In the case of contention for CPU cycles, packets 
will start being dropped when the data receiver is 
switched out and its data buffer becomes full. 
This is clearly not an issue with TCP, but is an 
important issue for UDP-based mechanisms. 
Once the data buffer becomes full, a string of 
packets will be lost until the receiver regains 
control of the CPU and is able to pull packets off 
of the network. The amount of time a receiver is 
switched out will be on the order of the time-
slice of a higher-priority process for which it has 
been preempted, or the aggregate time-slice of 
the processes ahead of it in the run queue. Such 
events are measured in milliseconds, where, as 
discussed above, the packet-arrival rate is on the 
order of microseconds. Thus if contention for 
CPU cycles is the predominant cause of data 
loss, the packet-loss signatures will consist of 
strings of 0’s created when the receiver is 
switched out, followed by strings of 1’s when it 
is executing.  Thus the packet-loss signature will 
be periodic and will have a low complexity 
measure. Different operating systems will have 
different scheduling policies and time-slices, but 
the basic periodic nature of the events will not 
change.  
      Data loss caused by contention at the NIC 
however operates on a much smaller timescale, 
that being the precise order in which the bit-
streams of competing packets arrive at and are 
serviced by the hardware. The packet-loss 
signatures represent those particular packets that 
successfully competed for NIC resources and 
those that did not. This is an inherently random 
process, and this fact is reflected in the packet-
loss signatures.  
     An important question is whether contention 
at the NIC sheds any light on the packet-loss 
signatures that are generated by collisions at 
intermediate routers in the transmission path. 

This is obviously dependent on the particular 
queuing discipline of each router. However, 
routers that employ a Random Early Detection 
(RED) policy can be expected to produce packet-
loss signatures very similar to those produced by 
contention at the NIC. This is because once the 
average queue length surpasses a given 
threshold, the router begins to drop (or mark) 
packets, and the particular packets to be dropped 
are chosen randomly. Also, and as discussed 
above, we have developed a small set of 
experimental results showing that packet-loss 
signatures caused by contention at (at least a 
small set) of intermediate routers are largely 
equivalent to those observed with contention at 
the NIC [14]. This is not to say however that the 
aggregate policies of a large set of intermediate 
routers will not produce packet-loss signatures 
that will be misinterpreted by the classification 
mechanism. This is an important issue and is the 
focus of current research.  
 
4     Experimental Design 
 
All experiments were conducted on the TeraGrid 
[1]: a high-performance computational Grid that 
connects various supercomputing facilities via 
networks operating at speeds up to  40 gigabits 
per second. The two facilities used in these 
experiments were the Center for Advanced 
Computing Research (CACR, located at the 
California Institute of Technology), and the 
National Center for Supercomputing 
Applications (NCSA, located at the University of 
Illinois, Urbana). The host platform at both 
facilities were IA-64 Linux clusters where each 
compute node consisted of dual Intel Itanium2 
processors. The compute nodes at CACR were 
1.3 GHz and those at NCSA were 1.5 GHz. The 
operating system at CACR was Linux 2.4.19-
SMP, while the operating system at NCSA was 
Linux 2.4.21-SMP.  Each compute node had a 
gigabit Ethernet connection to the TeraGrid 
network.  
     The experiments were designed to capture a 
large set of complexity measures under known 
conditions. In one set of experiments, the data 
receiver executed on a dedicated processor 
within CACR, and additional compute-bound 
processes were spawned on this same processor 
to create CPU contention. As the number of 
additional processes was increased, the amount 
of time the data receiver was switched out 
similarly increased. Thus there was a direct 
relationship between CPU load and the resulting 
packet loss rate.  To investigate loss patterns 



caused by contention for NIC resources, we 
initiated a second (background) data transfer. 
The data sender of the background transfer 
executed on a different node within the NCSA 
cluster, and sent UDP packets to the node on 
which the data receiver was executing (there was 
not a receiver for the background transfer). 
Initially, the combined sending rate was set to 
the maximum speed of the NIC (one gigabit per 
second), and contention for NIC resources was 
increased by increasing the sending rate of the 
background transfer. The packet loss 
experienced by both data transfers was a function 
of the combined sending rate, and this rate was 
also set to provide a wide range of loss rates. In 
all cases the primary data transfer had a sending 
rate of 1 gigabit per second. In both sets of 
experiments, the complexity values were 
computed at each control point. All experiments 
were performed late at night when there was 
observed to be little (if any) network contention.  
     We attempted to keep the loss rate within a 
range of 0 – 10% and to gather a large number of 
samples within that range. In the case of 
contention at the NIC, we collected 
approximately 3500 samples in this range (each 
of which represented a data transfer of 100 
Megabytes). The scheduler made it more 
difficult to keep the loss rate within the desired 
range when looking at CPU contention because 
we had no control over how it switched 
processes between the two CPUs after they were 
spawned. This resulted in approximately 1500 
samples within the chosen range.    
       For reasons related to the development of 
the Bayesian analysis (discussed below), we 
needed to have a large sample of complexity 
values at discrete (and small) intervals within the 
loss range. To accomplish this, we sorted the 
data by loss rate, and binned the data with 30 
complexity measures per bin. The bins were 
labeled with the mean loss rate of the 30 
samples.  
 
5     Experimental Results 
 
Figure 1 shows the complexity values associated 
with contention for NIC resources at each data 
bin. As can be seen, there is a very strong 
relationship between complexity measures and 
loss rates. This figure also shows that complexity 
measures, and the inherent randomness in the 
system they represent, increases very quickly 
with increasing loss rate. It can also be observed 
that the distribution of complexity measures at 

each data bin appear to be tightly packed around 
the mean.  
        As shown in Figure 2, the behavior of 
complexity measures associated with contention 
for CPU resources show little change with 
increasing loss rates. While the distribution of 
complexity measures in each bin is not as tightly 
packed as that of contention at the NIC, the 
measures do appear to be spread out evenly 
around the mean.  
      Figure 3 shows the mean complexity 
measures at each data bin with 95% confidence 
intervals for both causes of data loss. As can be 
seen, there is a very clear separation of 
complexity measures even at very low loss rates. 
In fact, the confidence intervals do not overlap at 
all for loss rates greater than 0.3%.  These are 
very encouraging results, and provide strong 
support for the claim that complexity measures 
are excellent metrics upon which a sophisticated 
classification mechanism can be built. The 
development of such a mechanism is considered 
in the following sections.  
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     Figure 1. This figure show the complexity 
measures associated with contention for NIC 
resources as a function of the loss rate.  
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Figure 2. This figure shows the complexity 
measures associated with contention for CPU 
resources as a function of loss rate. 
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Figure 3. The figure shows the mean 
complexity measure and 95% confidence 
intervals around the mean as a function of the 
cause of data loss and the loss rate.  
 
6     Statistical Analysis 
 
The goal towards which we are working is the 
development of statistical models that can be 
used accurately to classify the causes of data loss 
as the data transfer is progressing. Similar to the 
approach taken in [18], the classification 
mechanism will be based on the application of 
Bayesian statistics. This approach centers on 
how values of a certain metric – for example, 
first-order complexity values – can identify a 
cause of packet loss. We denote the cause of 
packet loss by K, and consider two cases: the 
cause of loss is related to contention at the NIC  
(K = KNIC) or contention at the CPU 
( CPUKK = ). (As noted above, we are using 
NIC contention as a proxy for network 
contention. A detailed study of contention at 
intermediate routers under various queuing 
disciplines is the focus of current research.) 
Denoting the complexity metric by C, Bayes’ 
rule states  
 

)(
)()|()|(

cP
KPKcPcKP ⋅=              (1) 

 
Here )|( cKP  is the posterior probability of K 
given complexity value C = c. That is, it 
represents the probability of a given cause of 
data loss in light of the current data (i.e., 
complexity metric). )|( KcP  is the conditional 
probability that the value c for metric C is 
observed when the cause K is dominant. It 
represents the likelihood of observing 
complexity measure C = c assuming the model  

(K = KNIC) or ( CPUKK = ). P(K) is the 
probability of cause K occurring, and P(c) is the 
probability that value c of metric C is observed.  
      In the Bayesian approach, the experimenter’s 
prior knowledge of the phenomenon being 
studied is included in prior distributions.  In this 
case, we are able to develop models for 

)|( KcP  (that is, the likelihood of observing 
metric C = c given cause K), and the distribution 
for P(c). Also, P(K) can be set during 
experimentation since the causes of packet loss 
are created by the experimenter. We begin by 
looking at the densities of complexity measures 
for )|( CPUKKcP = and P(c | CPUKK = ).  
 
6.1 Data Models 
 
The behavior of complexity measures appears to 
be governed by some as-yet-unknown set of 
mathematical processes. This suggests that it 
may be possible to develop simple empirical 
models to describe the distributions for 

)|( CPUKKcP = and P(c | CPUKK = ).  
      The approach we used was to feed the 
complexity measures through a sophisticated 
statistical program with very powerful tools for 
fitting models to observed data. Given the shape 
of the curve for complexity measures associated 
with NIC contention, it seemed reasonable to 
investigate models involving exponentials. We 
tested many models (including polynomial), and 
the best fit for the data was obtained using the 
sum of two exponentials. The complexity 
measures and the model are shown in Figure 4.  
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Figure 4. This figure shows the fitted data 
model when the cause of loss is contention for 
NIC resources.  
 
Figure 5 shows the empirically derived mean 
complexity measures and 95% confidence 
intervals, and how they lay on the fitted data 
model. Visually, it appears to be an excellent fit.
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Figure 5. This figure shows the mean 
complexity measures and 95% confidence 
intervals around the mean and how they lay 
along the fitted model.  
 
Based on the behavior of complexity measures 
associated with contention for CPU resources, it 
appeared that a straight line would provide the 
best fit for the data. Extensive testing showed 
this to be true, and Figure 6 shows the fitted data 
model and the distribution of complexity 
measures around the model. Figure 7 shows the 
means and 95% confidence intervals for the 
empirically derived complexity measures and 
how they lay along the fitted data model.  
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Figure 6. This figure shows the fitted data 
model when the loss is caused by contention 
for CPU resources.  
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Figure 7.  This figure shows the mean 
complexity measures and 95% confidence 
intervals around the mean, and how they lay 
across the fitted data model. 
 
6.2 Goodness of Fit. 
 
     Visually, it appears that the models describe 
the empirical data quite well, but more than a 
visual “match” is required. To construct a model 
to fit data, there are several criteria that need to 
be satisfied. Factors such as largest relative 
residual, the mean relative residual, the sum of 
the squared residuals, the percentage of residuals 
greater than a chosen value, and the correlation 
coefficient should be considered. 
      The analysis of residuals for the two data 
models is shown in Table 1. As can be seen, the 
largest relative residual for both models is 
approximately 14%, while the mean relative 
residual is 1.37% for the NIC model and 2.58% 
for the CPU model. The sum of squared relative 
residuals is particularly good for both models, 
especially considering the number of data points. 
The number of data values above and below the 
theoretical prediction is very close for both data 
models. The correlation coefficient for the NIC 
model is excellent. These results indicate a very 
good fit for both models.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. This table shows the metrics used to 
determine goodness of fit for both fitted data 
models.  
 
  
6.3 Distribution of Complexity Measures  
 
The empirically derived models fit the data quite 
well and we will use these as our starting point.  
The approach is to use the fitted data model as 
the mean complexity measure at each loss rate. 
Now the distribution of complexity measures 
around this mean must be derived.  
     Our working hypothesis is that the data values 
are normally distributed around the mean of the 
empirical data. We go about justifying this 
working conclusion as follows. The obvious first 
step is to try and rule out a Normal distribution 
by checking to see if the distribution is clearly 
non-Normal, and this is clearly not the case. The 
distribution is not obviously uniform random, for 
example, because the data clearly cluster quite 
closely around the mean value, and quickly 
become more sparsely grouped the farther they 
are from the mean; in fact, this is a characteristic 
one would expect of a Normal distribution. 
     The next step is to try to rule out a Normal 
distribution by testing the numbers of data points 
contained within the various standard deviations 
away from the mean. This does not allow us to 

rule out a Normal distribution, either. However, 
so far, all this allows us to conclude is that we 
cannot easily rule out a Normal distribution. 
     The next step is to perform a hypothesis test 
using a statistical test for Normality. The one we 
have chosen is the Shapiro-Wilks test statistic. 
We applied this test to the data in each data bin, 
and when outliers were removed from the data, 
we were, without exception, not required to 
reject our hypothesis. Based on this, we accept 
our working hypothesis that this distribution is 
Normal. 
 
6.4    Use of the Theoretical Model 
 
We now have models for the  
P( c | CPUKK = ), the P(c | K = KNIC)  and, by 
extension, the P (c)*.  Also, we have a working 
hypothesis that the complexity measures are 
normally distributed around the mean, and we 
have a good estimate of the standard deviation 
around the mean based on the empirical data.  
We use these models as follows.  
       First, the classification mechanism computes 
the complexity measure for the current 
transmission window. Second, we use the fitted 
data models to find the “theoretical” mean of the 
complexity measure, at that given loss rate, for 
each model. The standard deviation around both 
means is that derived from the empirical data. 
Next, and given the working hypothesis that the 
complexity measures are normally distributed 
about the mean, we are able to compute the 
likelihood of the complexity measure assuming 
each model. We do this as follows. For each 
complexity value Cx  we compute the distance 

CCx µ−  from the “theoretical” mean. We then 
standardize this distance by using the standard 
deviation so that we have an equivalent distance 
in the standard normal distribution equal to 

C

CCx
σ

µ−
 (where Cσ  is the empirically 

derived standard deviation of our hypothesized 
Normal distribution).  
        The final step is to calculate the area under 
the curve between the observed complexity 
measure and the means of the two distributions. 
However, since this area approaches zero as the 
observed value approaches the theoretical mean 
                                                           
* P( c) = )|( CPUKKcP = * P ( CPUKK = ) 
+ P(c | K = KNIC)  * P (  K = KNIC ).  
 

1. LRR:   13.32%     13.92% 
2. MRR:   1.37%           2.58% 
3. SSQ:   0.447             0.156       
4. CC:   0.987             0 
5. NRA:  1615              772 
6. NRB:  1782              709 
7. RR 10-20%            0.12%            0.81% 
8. RR  20-80%           0%                  0% 
             
 
1. Largest relative residual 
2. Mean relative residual 
3. Sum of the squared relative  
residuals 
4. Correlation coefficient 
5. Total number of residuals  
above the theoretical prediction 
6. Total number of residuals  
below the theoretical prediction 
7. Relative Residuals in range of 10-20%. 
8. Relative Residuals in range of 20-80%. 
 
 

 
 
Metric                   NIC          CPU 



Cµ , we must subtract this value from 1 to arrive 
at the desired probability value. 
 
7  Conclusions and Future Research 
 
In this paper, we have shown that complexity 
measures of packet-loss signatures can be highly 
effective as a classifier for causes of packet loss 
over a wide range of loss rates. Also, it was 
shown that the divergence of complexity 
measures, and thus the ability to discriminate 
between causes of packet loss, increases rapidly 
with increasing loss rates. However, for loss 
rates less than approximately 0.003, it was 
shown that complexity measures in and of 
themselves are not powerful enough to 
discriminate between causes of packet loss. Thus 
one focus of current research is the identification 
of other metrics or statistical models that can be 
effective at very low loss rates.  
      This research has also shown that complexity 
measures lend themselves quite naturally to the 
development of simple empirical data models.  
This opens the door to the development of a 
sophisticated probability model for causes of 
packet loss based on the application of Bayesian 
statistics.  We are currently working on the 
implementation of this model. 
     What this research does not answer is the 
generality of the empirical models. Based on 
empirical results obtained for other architectures 
[14,15], we believe that the significant 
differences between the distributions of 
complexity measures for causes of data loss, and 
the general shape of the distributions, will be 
consistent. This research also does not answer 
the question of whether random network events 
can create complexity measures for which our 
interpretation is incorrect.  Both of these issues 
are the focus of our current research.   
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