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Abstract

In  this paper, we describe FOBS: a simple user-
level communication protocol designed to take
advantage of the available bandwidth in a high-
bandwidth, high-delay network environment. We
compare the performance of FOBS with that of
TCP both with and without the so-called Large
Window extensions designed to improve the
performance of TCP in this type of network
environment. It is shown that FOBS can obtain
on the order of 90% of the available bandwidth
across both short and long high-performance
network connections. In the case of the long haul
connection, this represents a bandwidth that is
1.8 times higher than that of the optimized TCP
algorithm. Also, we demonstrate that the
additional traffic placed on the network due to
the greedy nature of the algorithm is quite
reasonable, representing approximately 3% of
the total data transferred.

1. Introduction

   A very important area of current research is
the development, implementation, and testing of
the cutting-edge networking infrastructure of the
future (e.g. Abilene [20] and VBNS [21]). An
integral component of such research efforts is the
development and testing of high-performance
distributed applications that, due to the limited
bandwidth and best-effort nature of the Internet1
environment, were heretofore infeasible.
Examples of such applications include
distributed collaboration across the Access Grid,
remote visualization of terabyte (and larger)
scientific data sets, high-performance
computations executing on the Computational
Grid, Internet telephony, and multimedia
applications. The high-performance networks
currently being developed and tested offer the
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Object-Based data transfer System): a very
simple user-level object-based1 communication
protocol developed for distributed applications
executing in a high-performance, high-delay
network environment (i.e. a computational grid).
We compare the performance and behavior of
FOBS against that of TCP with and without the
so-called “Large Window” extensions [6] that
have been defined to optimize the performance
of TCP in this network environment. This study
evaluates the behavior and performance of the
two approaches across both short haul and long
haul high-performance network connections
under a variety of parameter settings and
conditions.
    While the primary focus of this paper is the
comparison of FOBS with TCP, we are also
interested in the relative performance and
behavior of FOBS and other user-level
approaches.  Given that the use of multiple TCP
streams (for a single data flow) is a widely used
technique for gridFTP, we also performed a set
of experiments comparing the performance of
FOBS with PSockets [13]. PSockets attempts to
experimentally determine the optimal number of
TCP sockets for a given flow, and then transfers
the data using this pre-determined number of
sockets. It is important to point out however that
such comparisons are preliminary, and more
research is required before definitive conclusions
as to the relative performance of the two
protocols can be drawn.

We feel this paper makes three contributions
in the area of high-performance distributed
computing. First, it outlines a simple user-level
object-based communication protocol that is
shown to provide excellent performance across
both short and long haul connections over high-
performance high-delay networks. In particular,
FOBS achieved on the order of 90% of the
available bandwidth across both the short and
long haul connections. In the case of the long
haul network, this represents a bandwidth 1.8
times higher than that of an optimized TCP
implementation. Secondly, this paper provides a
detailed evaluation of performance as a function
of the various parameters that can be controlled
at the user level. Thirdly, this research was
conducted using existing “off-the-shelf”
connections across the Abilene backbone
network without specialized or dedicated
network links. This should increase significantly

                                                          
1 We define the sense in which it is an object-
based data transfer system below.

the size of the distributed computing community
for which these results will be of interest.
    The rest of this paper is organized as follows.
In Section 2, we discuss the most closely related
research efforts. In Section 3, we provide an
overview of FOBS, and discuss the algorithms
employed by the data sender and data receiver.
In Section 4, we describe the experimental setup
for the comparison of FOBS and TCP, and we
present the results of this experimentation in
Section 5. In Section 6, we provide our initial
experiments comparing FOBS and PSockets. We
present our conclusions and discuss ongoing and
future research in Section 7.

2. Related Work

    Obtaining all of the available bandwidth in a
high-delay, high-bandwidth network
environment is a very important area of current
research, and two basic approaches are being
pursued. First, there is ongoing research focused
on improving the performance of the TCP
protocol itself for this network environment.
Secondly, there is research aimed at developing
techniques at the application level that can
circumvent the performance problems associated
with TCP. We briefly describe each approach in
turn.
    As discussed in [13,14,15], the size of the
TCP window is the single most important factor
in achieving good performance over high-
bandwidth, high-delay networks. To keep such
“fat” pipes full, the TCP window size should be
at least as large as the product of the bandwidth
and the round-trip delay. This has led to research
in automatically tuning the size of the TCP
socket buffers at runtime [16]. Also, it has led to
the development of commercial TCP
implementations that allow the system
administrator to significantly increase the size of
the TCP window to achieve better performance
[14]. Another area of active research is the use of
a Selective Acknowledgement mechanism
[8,14,18] rather than the standard cumulative
acknowledgement scheme. In this approach, the
receiving TCP sends to the sending TCP a
Selective Acknowledgement (SACK) packet that
specifies exactly those packets that have been
received, allowing the sender to retransmit only
those segments that are missing.



An excellent source of information, detailing
which commercial and experimental versions of
TCP support which particular TCP extensions,
may be found on the Pittsburgh Supercomputing
Center web pages [18].

At the user level, the most common approach
to circumventing the performance flaws in TCP
is to allocate multiple TCP streams for a given
data flow. This is the approach taken by
PSockets [13], the grid-FTP protocol [1]
(developed by the Globus project [17]) and in
[10]. This approach can provide significant
performance enhancement for two reasons: First,
the limitations on TCP window sizes are on a per
socket basis, and thus striping the data across
multiple sockets provides an aggregate TCP
buffer size that is closer to the (ideal size) of the
bandwidth times round-trip delay. Secondly, this
approach essentially circumvents the congestion
control mechanisms of TCP.  That is, while some
TCP streams may be blocked due to the
congestion control mechanism, it is likely that
some other streams are ready to fire. The larger
the number of TCP streams, the lower the
probability that all such streams will be blocked
resulting in a higher probability that some TCP
stream will always be ready to fire.

The two most closely related user-level
approaches are the Reliable Blast UDP Protocol
(RUDP [6a]) and SABUL[13a]. In RUDP, all of
the data is blasted across the network without
any communication between the data sender and
receiver. Then, after some timeout period, the
receiver sends a list of all missing packets to the
sender. The data sender then retransmits all of
the lost packets, and this cycle is repeated until
all of the data has been successfully transferred.
The primary difference between FOBS and
RUDP has to do with the types of networks for
which the approach is intended. As discussed by
the authors, RUDP is designed for high-
performance QoS-enabled networks with a very
low probability of packet loss. The approach
presented here is (still in the process of being)
designed for currently available (although non-
QoS-enabled) high-performance networks.

SABUL [13a] employs a single UDP stream
for data transmission, and a (single) TCP stream
for control information related to the state of the
data transfer. The primary difference between
FOBS and SABUL has to do with the way
packet loss is interpreted and how such loss
impacts the data-transmission algorithm.  In
particular, SABUL makes the assumption that
packet loss implies congestion, and, similar to
TCP, reduces the sending rate to accommodate

such perceived congestion. Our approach does
not make the assumption that packet loss is
necessarily due to congestion, and further,
assumes that some packet loss is inevitable and
tolerable when sending packets over wide area
networks.

3.  FOBS

As noted above, we categorize FOBS as what
we term an object-based data transfer system. By
object-based, we mean that none of the data
transferred can be assumed correct until all of the
data has been received. This is in contrast to
stream-based protocols such as TCP where the
application is allowed to access data as it
becomes available. This comes at the cost
however of requiring that each byte must be
delivered to the application in exactly the same
order in which it was sent. Streams are kernel-
level constructs and are implemented at the
kernel level. Objects on the other hand are user-
level constructs and are implemented at the user
level. This allows knowledge of the
characteristics of the data transfer itself to be
leveraged to significantly enhance performance.
    The fundamental characteristic of an object-
based data transfer that is leveraged by FOBS is
the assumption that the user-level data buffer
spans the entire object to be transferred. For the
moment, assume that this is correct and consider
how it can be leveraged to enhance performance.
In particular, this characteristic allows FOBS to
push to the limit the basic concept of the “Large
Window” extensions developed for TCP: that is,
the window size is essentially infinite since it
spans the entire data buffer (albeit at the user
level). It also pushes to the limit the idea of
selective acknowledgements. Given a pre-
allocated receive buffer and constant packet
sizes, each data packet in the entire buffer can be
numbered. The data receiver can then maintain a
very simple data structure with one byte (or even
one bit) allocated per data packet, where this data
structure tracks the received/not received status
of every packet to be received. This information
can then be sent to the data sending process at a
user-defined acknowledgement frequency. Thus
the selective acknowledgement window is also in
a sense infinite. That is, the data sender is
provided with enough information to determine
exactly those packets, across the entire data
transfer, that have not yet been received.
    FOBS allocates one UDP connection to
transfer the data from the sender to the receiver.
Another UDP connection is established to send



acknowledgement packets from the receiver to
the sender. Additionally, a single TCP
connection is opened to send a signal from the
receiver to the sender indicating that all of the
data has been successfully transferred.

3.1 The Data Sending Algorithm

The data-sending algorithm iterates over three
basic phases. In the first phase, the data sender
employs some algorithm to determine the
number of data packets to be placed onto the
network before looking for, and processing if
available, an acknowledgement packet. This is
referred to as a “batch-sending” operation since
all such packets are placed onto the network
without interruption (although the select system
call is used to ensure adequate buffer space for
the packet). It is very important to note that after
a batch-send operation the data sender looks for,
but does not block for, an acknowledgement
packet. It also looks for the completion signal
from the receiver.

In the second phase of the algorithm,
the data sender looks for, and if available,
processes an acknowledgement packet.
Processing of an acknowledgement packet
entails updating the receive/not received status
for each data packet acknowledged, and
determining the number of packets that were
received by the data receiver between the time it
created the previous acknowledgement packet
and the time it created the current
acknowledgement packet. This information can
then be used to determine the number of packets
to send in the next batch-send operation. If no
acknowledgement packet is available, this
information can also be used to determine the
number of packets to send in the next batch-send
operation. Note that a repeated batch-sending
operation with zero packets is logically
equivalent to blocking on an acknowledgement.
In the third phase of the algorithm, the data
sender executes some user-defined algorithm to
choose the next packet, out of all
unacknowledged packets, to be placed onto the
network.

3.1.1 Parameters for the Data Sender

The first parameter studied was the number of
packets to be sent in the next batch-send
operation. Intuitively, one would expect that the
data sender should check for an
acknowledgement packet on a very frequent

basis, thus limiting the number of packets to be
placed onto the network in a given batch-send
operation.  Our experimental results supported
this intuition, finding that two packets per batch-
send operation provided the best performance.
We therefore used this number in all subsequent
experimentation
    We also performed extensive experimentation
to determine which particular packet, out of all
unacknowledged packets, should next be placed
onto the network. We tried several algorithms,
and, in the end, it became quite clear that the best
approach (by far) was to treat the data as a
circular buffer. That is, the algorithm never went
back to re-transmit a packet that was not yet
acknowledged, if there were any packets that had
not yet been sent for the first time. Similarly, a
given packet was re-transmitted for the n+1st

time only if all other unacknowledged packets
had been re-transmitted n times.
  As can be seen, the algorithm executed by the
sender is very greedy, continuing to transmit (or
re-transmit) packets (without blocking) until it
receives the completion signal from the data
receiver specifying that all data has been
successfully received. Thus a reasonable
question to ask is how wasteful of network
resources is this approach.
    To answer this question, we maintained a
count of the total number of packets placed on
the network by the data sender. We define
wasted resources as the total number of packets
sent, minus the number of packets that must be
transferred, divided by the number of packets
that must be transferred.

3.2 The Data Receiving Algorithm

The data receiver basically polls the network for
new packets, and, when a packet becomes
available, incorporates it into its proper place
within the data buffer as determined by its
sequence number.
    The most important parameter with respect to
the data receiver is the number of new packets
received before generating and sending an
acknowledgement packet. The frequency with
which the data receiver sends acknowledgement
packets essentially determines the level of
synchronization between the two processes. A
small value (and thus a high level of
synchronization) implies that the data receiver
must frequently stop pulling packets off of the
network to create and send acknowledgement
packets. Given that the algorithm is UDP-based,
those packets missed while creating and sending



an acknowledgement will, in all likely-hood, be
lost. A very high value, and thus a very low level
of synchronization, results in both the data
sender and data receiver spending virtually all of
their time placing packets on, and reading
packets off, of the network. We show the
performance of the algorithm as a function of the
acknowledgement frequency below.

4. Experimental Design

We investigated the performance
characteristics of (reasonably) large-scale data
transfers between various sites connected by the
Abilene backbone network. We investigated the
performance of TCP (with and without the Large
Window Extensions), and compared this with the
performance and behavior of FOBS. One
connection tested was between Argonne National
Laboratory (ANL) and the Laboratory for
Computational Science and Engineering (LCSE)
at the University of Minnesota. The slowest link
in this path was 100 Mb/Sec (from the desktop
computer to the external router at ANL). Also,
we performed a set of experiments between ANL
and the Center for Advanced Computing
Research (CACR) at the California Institute of
Technology. ANL is connected to both of these
sites across Abilene. The endpoints at both ANL
and LCSE were Intel Pentium3-based PCs
running Windows 2000 and using the Winsock2
API.

We experimented with two endpoints at
CACR. One was an SGI Origin200 with two
225Mhz MIPS R10000 processors, one Gigabyte
of RAM, and a 100Mb/Sec interface card. The
other was a HP V2500 system with 64 CPUs
(440Mhz PA-8500 64-bit RISC processors), a
100Mb/Sec external interface card, running the
HP-UX 11.10 operating system. The HP-UX
11.10 operating system automatically provides
window scaling and timestamps when the user
requests a socket buffer size greater than 64K.
The SGI Origin200 requires kernel-level access
to increase the TCP buffer size (which we did
not have). We also conducted experiments
between an SGI Origin2000 (with 49 processors
running IRIX 6.5) at NCSA and the Windows
box at LCSE. We were interested in this
connection because both endpoints had a Gigabit
Ethernet network interface card with an OC-12
connection to the Abilene backbone network.

The round-trip delay between ANL and
LCSE was measured (using traceroute) to be on
the order of 26 milliseconds, and we (loosely)

categorized this as a short haul network. The
round-trip delay between ANL and CACR was
on the order of 65 milliseconds, which we (again
loosely) categorized as a long haul network.

The transmitted data size for the experiments
was 40 MB, where the data was divided into
equal fixed-sized packets of 1024 bytes (which
was less than the MTU for all network links
considered). The metric of interest was the
percentage of the maximum available bandwidth
obtained by each approach.

5. Experimental Results

    Figure 1 shows the performance of FOBS
across the short haul connection (between ANL
and LCSE), and the long haul connection
(between ANL and CACR). As noted,
performance was measured as the percentage of
the maximum available bandwidth obtained by
FOBS (where the 100 Mb/Sec interface card was
the limiting factor). Performance is shown as a
function of the number of packets received
before triggering an acknowledgement packet.
As can be seen, FOBS provides excellent
performance across both the long and short haul
connections, achieving approximately 90% of
the available bandwidth across both network
connections.

 Figure 2 provides a simple measurement of
the amount of network resources wasted due to
the greedy nature of the algorithm. This was
calculated as the total number of packets placed
on the network, minus the total number of
packets required to complete the data transfer,
divided by the total number of packets required.
This is also presented as a function of the
acknowledgement frequency.
    As noted, the limiting factor in these
experiments was the 100 Mb/Sec network
interface card of the desktop machine at ANL.
We also performed a series of tests between an
SGI Origin2000 at NCSA, and the Intel
Pentium3 Windows 2000 box at LCSE
(described in Section3), both of which had
Gigabit Ethernet network connections with an
OC-12 (622 Mb/Sec) data link to the Abilene
backbone network. The SGI Origin2000 had 48
R1000 processors with a total memory of 14 GB
running IRIX 6.5.  We looked at the percentage
of the maximum available bandwidth obtained as
a function of the UDP packet size. These results
are shown in Figure 3. As can be seen, the size of
the data packet makes a tremendous difference in
performance, and the performance of FOBS



peaked out at approximately 52% of the
maximum available bandwidth (40 MB/Sec).

5.1. Performance of TCP

Table 1 shows the performance of TCP
across the short and long haul connections. As
discussed in Section 3, we experimented with
two endpoints at CACR: an SGI Origin200 (that
requires kernel-level access to increase the TCP
window size), and the HP V2500 system that
utomatically provides window scaling when the
user requests a buffer size greater than 64KB.
As can be seen, the results obtained using the
Windows 2000 TCP implementation (across the
short haul network) were quite impressive,
providing approximately the same performance
as that of FOBS. Two factors combined to make
such performance possible: First, both endpoints
provided automated support for the Large
Window extensions to TCP. Secondly, there was
virtually no contention in the network and thus
the congestion control mechanisms of TCP were
not triggered.

As can be seen however, the performance of
TCP drops dramatically over the long haul
connections. The performance was significantly
better when both endpoints provided automatic
support for the Large Window Extensions to
TCP, achieving on the order of 50% of the
available bandwidth. Without such support, this
performance decreased to approximately 10% of
the available bandwidth. The reason for this
dramatic drop in performance (even with the
Large Window Extensions enabled) was most
likely caused by to the presence of some
contention in the network, which triggered
TCP’s very aggressive congestion control
mechanisms.

6. Comparison with PSockets

We were interested in comparing the
performance and behavior of FOBS with other
user-level approaches currently under
development. We chose PSockets for this
comparison primarily because multiple TCP
streams are often employed for gridFTP
applications. A secondary (but important) factor
was that the PSockets library was very easy to
install, build, and use. We conducted this set of
experiments between the SGI Origin2000 housed
at NCSA and the HP VV2500 system located at
CACR (both are described in detail in Section 4).

The results are provided in Table 2. As can be
seen, FOBS was able to obtain 76% of the
available bandwidth while Psockets obtained
56% of this maximum. The results obtained for
PSockets are somewhat less than those reported
elsewhere [13]. Similarly, the performance of
FOBS was somewhat less than that observed
across the other connections tested. It seems
reasonable to assume that this reduced
performance (in both cases) was a function of
increased contention for network resources.

7. Conclusions and Future Research

     In this paper, we have described a very
simple, user-level communication protocol
designed for a high-bandwidth, high-delay
network environment. We have shown that the
algorithm performs quite well, achieving
approximately 90% of the available bandwidth
on both short and long connections over the
Abilene backbone network. Also, we have
shown that the algorithm can achieve on the
order of 50% of the available bandwidth when
the communication endpoints have Gigabit
Ethernet cards and an OC-12 connection to the
Abilene backbone network. Further, we
demonstrated that the additional load placed on
the network due to the greedy nature of the
algorithm is quite reasonable, representing
approximately 3% of the total data transferred.
    Clearly there is much research left to be done.
Perhaps most importantly, FOBS does not yet
provide congestion control. This is a reasonable
first cut given that the primary issue (at least
currently) is one of making efficient use of high-
performance networks rather than one of
congestion in such networks. However, some
form of congestion control is needed before the
algorithm can become generally used.
    There are two ways of addressing this issue
that are being explored. First, we are looking at
modifying FOBS such that it switches to a high-
performance TCP algorithm when congestion in
the network is detected and when such
congestion is determined to be of more than
temporary duration. Then, when the congestion
appears to have dissipated, FOBS could switch
back to the greedy implementation of the
algorithm. Alternatively, we are investigating
mechanisms to decrease the greediness of FOBS
when congestion in the network is detected (and
is of sufficient duration).
    In conclusion, it is important to point out the
difficulties encountered in trying to pursue
research of this nature. In particular, since



network conditions are constantly changing it is
very difficult to find windows of time when two
or more approaches can be compared in a
meaningful way. For this reason, we are also
engaged in the development of simulation
models that can be used to compare the various
algorithms under similar (albeit simulated) loads
and traffic mixes.
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Figures

Figure 1. This figure shows the performance of FOBS across both short and long haul high-
performance network connections. Performance is measured as the percentage of maximum
bandwidth achieved and is shown as a function of number of packets received before triggering an
acknowledgement packet.

Figure 2. This figure shows the amount of wasted network resources as a function of the number of
packets received before triggering an acknowledgment packet. The amount of waste was calculated
as the total number of packets required to complete the transfer divided by the total number of
packets actually sent.
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Figure 3. This figure shows the percentage of maximum bandwidth obtained over a short haul
connection where the communication endpoints both had Gigabit Ethernet network interface cards
and an OC-12 connection to the Abilene backbone network.  Performance is shown as a function of
the UDP packet size.

Table 1. This table shows the percentage of the maximum bandwidth obtained by TCP with
and without the Large Window extensions.
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Table 2. This table compares the performance of FOBS with that of PSockets across one high-
performance network connection.

PSockets FOBS

Percentage of Maximum
Bandwidth Obtained

Percentage of Wasted
Network Resources

Optimal Number of
Parallel Sockets

56% 76%
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