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Abstract

In this paper, we discuss the development of a highly efficient, application-level data transfer system for
computational grids. We describe and evaluate two application-level congestion control mechanisms, and
compare their performance with respect to each other and with that obtained by TCP. We show that both
application-level protocols are able to obtain performance that is very close to the maximum available
bandwidth while keeping data loss rates low (from 0.06% to 1.6 %). Also, we show that both approaches
obtain throughput that is close to an order of magnitude greater than that achieved by TCP. Finaly, we
begin to address the important issue of whether all data loss should be assumed to represent a network
congestion event, with the goal of crafting the response to observed data loss as a function of the root
causes of such loss.

1. Introduction

The national computational landscape is undergoing radical changes as a result of the introduction of
cutting-edge networking technology and the availability of powerful, low-cost computational engines. This
combination of technologies has led to an explosion of advanced high performance distributed applications
that, because of the limited bandwidth and best-effort nature of the Internetl environment, were heretofore
infeasible. Concurrently, research efforts have focused on the development of Grid computing, a
fundamentally new set of technologies that create large-scale distributed computing systems by
interconnecting geographically distributed computational resources via very high-performance networks.
The advanced applications being developed to execute in Grid environments include distributed
collaboration across the Access Grid, remote visualization of terabyte (and larger) scientific data sets,
large-scale scientific simulations, Internet telephony, and multimedia applications. The emerging Grid
technol ogies are becoming increasingly important to the national computational infrastructure, and research
projects aimed at supporting these new technologies are both critical and timely.

Arguably, Grid computing will reach its vast potential if, and only if, the underlying networking
infrastructure (both hardware and software) is able to transfer vast quantities of data across (perhaps) quite
long distances in a very efficient manner. Experience has shown, however, that advanced distributed
applications executing in existing large-scale computatjonal Grids are often able to obtain only a very small
fraction of the available underlying bandwidth [3, 8. The reason for such poor performance is that the
Transmission Control Protocol (TCP), the communication mechanism of choice for most distributed
applications, was not designed and is not well suited for a high-bandwidth, high-delay network
environment [2, 8]. Thisissue has led to research aimed at improving the performance of the TCP protocol
itself in this network environment [2], as well as developing application-level techniques that can
circumvent the performance problems inherent within the protocol [6, 9, 13].

Despite al of the research activity undertaken in this area, significant problems remain in terms of
obtaining available bandwidth while being in some sense fair to competing flows. While TCP is able to
detect and respond to network congestion, its very aggressive congestion-control mechanisms result in poor
bandwidth utilization even when the network is lightly loaded. User-level protocols such as GridFTP [1],
RUDP [9, 10], and previous versions of FOBS [5, 7] are able to obtain a very large percentage of the
available bandwidth. However, these approaches rely on the characteristics of the network to provide
congestion control (that is, they generally assume there is no contention in the network). Another approach

! Please note that due to space limitations the reference list is representative rather than comprehensive.



(taken by SABUL [13]) is to provide an application-level congestion-control mechanism that is closely
aligned with that of TCP (i.e. using the same control-feedback interval of a single round trip time).

Our research is focusing on the development of effective and efficient congestion control mechanisms that
are appropriate for application-level data transfer mechanisms operating in a high-bandwidth, high-delay
network environment. It is our belief that operating from an application perspective provides many
opportunities for enhanced performance and enhanced resource utilization. For example, operating at the
application level makes possible the viewing of the problem from a system-level perspective, where
information related to the state of the end-to-end system can be collected and integrated into the congestion
control mechanism. Similarly, the application can collect, analyze, and incorporate into the control
mechanisms a wealth of historical information related to both intra- and inter-session data transfers. It is
also possible to develop families of control mechanisms, where the choice of the controller is based on the
characteristics of the end-to-end system. It would also be possible to dynamically switch between control
mechanisms based on current system conditions.

In this paper, we present results of our initial exploration of the very rich solution space that becomes
available when controlling data transfers from the application level. In particular, we implement and
evaluate two different control mechanisms for large-scale data transfers across high-performance, wide area
network connections. Both approaches attempt to minimize packet-loss but respond to such loss in very
different ways. One mechanism uses what may be termed state-based congestion control where control
decisions are a function solely of the current state and the current loss rate. This is an aggressive protocol
that attempts to capture all otherwise unused bandwidth in a manner that is consistent with maintaining a
low level of packet loss. The second approach is a non-aggressive protocol that attempts to find and remain
within a sending range that allows it to maintain a data loss rate very close to zero.

There are three primary contributions of this paper. Firgt, it clearly demonstrates that application level
congestion control mechanisms can obtain a very high percentage of the available bandwidth while
maintaining a very low data loss rate. Secondly, it shows that it can be quite useful to develop a family of
congestion control mechanisms, each of which is targeted to a particular (expected) network environment.
Finally, it begins to explore the important issue of the root causes of observed data loss, and raises the
question of whether all data loss represents a debilitating network congestion event.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the FOBS data
transfer mechanism. In Section 3, we discuss the characteristics of the two protocols studied. In Section 3,
we discuss the experimental design, and we provide the results of this experimentation in Section 4. In
Section 5, we discuss related work, and we provide our conclusions and current research directions in
Section 6.

2. TheFOBSData Transfer System

FOBS isasimple, user-level communication mechanism designed for large-scale data transfers in the high-
bandwidth, high-delay network environment typical of computational Grids. It uses UDP as the data
transport protocol, and provides reliability through an application-level acknowledgment and
retransmission mechanism. Experimental results have shown that FOBS performs extremely well in a
computational Grid environment, consistently obtaining on the order of 90% of the available bandwidth
across both short- and long-haul network connections [5-7, 14]. Thus FOBS addresses quite well the issue
of obtaining a large percentage of the available bandwidth in a Grid environment. However, FOBS is in-
and-of-itself a very aggressive transport mechanism that does not adapt to changes in the state of the end-
to-end system. Thus to make FOBS useful in a general Grid environment we must develop congestion
control mechanisms that are responsive to changes in system conditions while maintaining the ability to
fully leverage the underlying high-bandwidth network environment.



2.1 System-Aware FOBS

System-aware FOBS is implemented on top of the FOBS data transfer engine. There is a simple control
agent residing at both communications endpoints that controls the activity of the data transfer engine.
Currently, these agents have functionality limited to carrying out the basic congestion control agorithms,
but ingtilling them with the ability to collect and share end-to-end system-state information is a focus of
current research. The data transfer engine itself is (at least conceptually) reasonably simple, and details of
its implementation are provided in [4-7]. For thisdiscussion, al that isrequired is a basic understanding of
the reliability mechanism sinceit is closely connected to the congestion control mechanisms.

FOBS employs a simple acknowledgment and retransmission mechanism where the file to be transferred is
divided into data units we call chunks. Datais read from the disk, transferred to the receiver, and written to
disk in units of chunks. Currently, chunks are 100 MBs, this number being chosen based on extensive
experimentation. Each chunk is subdivided into segments, and the segments are further divided into
packets. Packets are 1,470 bytes (within the MTU of most transmission mediums), and a segment consists
of 10,000 packets. The receiver maintains a bitmap for each segment in the current chunk depicting the
received/not-received status of each packet in the segment. A 10,000-packet segment requires a bitmap of
1,250 bytes, and this number was also chosen in consideration of the MTU size. These bitmaps are sent
from the data receiver to the data sender at intervals dictated by the protocol, and triggers (at a time
determined by the congestion/control flow algorithm) a retransmission of the lost packets. The bitmaps are
sent over a TCP socket.

2.2 Congestion Control Algorithms

We are interested in evaluating approaches to congestion control that operate under a different set of
assumptions than current techniques. One issue in which we are interested is whether the feedback-control
interval must be pegged to roundtrip times to provide effective congestion control and ensure fairness. One
problem with this approach is that a small spike in packet |oss may represent an event that has dissipated by
the time the sender is even aware of its occurrence. Thus the congestion control mechanism may be
reacting to past events that will not re-occur in the immediate future. Similarly, this approach can result in
significant variance in offered load if the control mechanism iterates between increasing the sending rate
due to low packet loss, observing a spike in packet-loss due to the increase in the sending rate, and then
aggressively backing off in reaction to increased loss. For these reasons, we believe it is important to
explore aternative approaches.

We have developed and tested two alternative approaches to congestion control, one where the feedback-
control interval is significantly lengthened and the increase/decrease parameters are linear. The other
approach is state-based, where the control interval is decreased from a chunk to a segment, and the
increase/decrease parameters are functions of the current state and current feedback. We discuss each
approach in the following sections.

It is important to note that historical knowledge is incorporated into the first protocol in three important
ways. First, it was observed that once the protocol found a sending rate that resulted in negligible packet
loss, it could remain at that rate for a reasonably long period of time (which in general was longer than it
took to successfully transfer one complete chunk of data). Secondly, it was observed that once such a rate
was established, the best approach was to stay at that rate. That is, there appeared to be an “optimal”
sending rate such that being more aggressive tended to result in non-proportional increases in packet 10ss,
and becoming less aggressive did not result in a meaningful decrease in packet loss. Finally, given a current
“optimal” sending rate S, it was observed that the next such safe sending rate was quite often close to S.
Thisimplies that the decrease parameter for the protocol does not need to be large.



2.2.1 Extending the Feedback Control Interval

Currently, the congestion control algorithm uses packet-loss rates to make decisions about modifying the
behavior of the system. Thus, in its current form, FOBS uses the same feedback information as TCP and
TCP-like algorithms. (We are however pursuing the collection and introduction of system-level information
into the control mechanism.) One difference however is that decisions regarding changes in system
behavior are made after one complete chunk has been successfully transferred. The other difference is that
both the increase and decrease parameters are linear. The basic algorithm is asfollows.

The mean loss rate for the entire chunk is calculated once the data has been successfully transferred, and
the sending rate is reduced if this rate exceeds a given threshold (currently %2 of 1%). If this threshold is
exceeded, the sending rate is reduced by a constant 5 Mbs (if the owest link is 100 Mbs). This decrease
rate was chosen based on extensive experimentation, and we are currently investigating techniques that
allow the control agents to choose and (possibly modify) this value dynamically. Thus the decrease
parameter may be modified, but the feedback-control interval remains constant.

The increase parameter is also linear, but the algorithm does not necessarily increase the sending rate each
time the loss-rate falls (or remains) below the threshold value. This feature of the algorithm reflects the
assumption that, at least for some network connections, there is a reasonably tight band in which the
protocol can safely operate and increasing the sending rate past this upper bound will (or can) result in non-
trivial packet loss. The bounds of these so-called safe operational bands may change during the execution
of alarge-scale data transfer, but it is assumed (and observed) that such changes are, in large part, neither
frequent nor severe. That is, when such boundaries change, the new boundaries tend to remain fixed long
enough for the algorithm to detect them. This aspect of the protocol isimplemented by tracking the number
of attempts made to move into a higher operational band, and the number of times such a move has resulted
inasignificant increase in packet loss. If, based on such historical information, it is deemed that an increase
in sending rate will result in asimilar increase in packet 1oss, the rate will remain unchanged.

2.2.2 State-Based Rate Changes

We are also investigating what may be termed a state-based approach where changes in the behavior of the
system are based solely on the current state and current feedback information. We have implemented three
states thus far: Green, Yellow, and Red. These states respectively represent excellent, moderate, and poor
system conditions. Each state has its own minimum and maxi mum sending rates and amounts by which this
rate can be increased or decreased, as well as a distinct set of conditions under which a state change will
occur. To increase the responsiveness to system conditions the state is re-evaluated after a segment of data
has been successfully transferred. The algorithm will significantly (and quickly) increase or decrease its
sending rateif thereis either negligible or massive packet loss respectively.

3. Experimental Design

We tested the performance of the application-level protocols and TCP between sites connected by the
Abilene backbone network. One connection was between the Center for Advanced Computing Research
(CACR, Cdifornia Institute of Technology), and Argonne National Laboratory (ANL). The other
connection was between CACR and National Center for Supercomputing Applications (NCSA, University
of Illinois at Urbana—CI&ampaign). The bottleneck on the link between CACR and ANL was a 100 Mbs
interface between ANL=and Abilene. Similarly, the maximum rate at which we were able to place data

2 The Gigabit Ethernet connection between the machine used in these experiments at ANL and the Abilene
backbone network experienced severe hardware failures as we were performing our experiments. The
Gigabit Ethernet card associated with the previous machine was replaced by a 100 Mbs interface card on
the (temporary) replacement system.



onto the network from CACR to Abilene (without causing massive data losses) was also 100 Mbﬁ The
hardware and software configuration for these machinesis provided in Table 1.

We transferred 50-Gigabytes of data between CACR and ANL, and between CACR and NCSA, for both
application-level control mechanisms. We tested the performance of TCP across these same links, but did
so for amuch smaller data set (40 MB) since this was sufficient to establish the performance characteristics
of the protocol. It isimportant to note that we were unable to increase the TCP buffer sizes since on these
hosts kernel-level permission is required to do so. However, the comparison is still valid in the sense that
one significant advantage that comes with operating at the application level is an essentially infinite
transmission window.

4. Experimental Results

The results of these experiments are shown in Table 2. As can be seen, both application-level protocols
performed quite well on the link between CACR and ANL where each obtained over 90% of the maximum
available bandwidth. The primary difference in the performance of the two protocols is in the level of
packet loss. The non-aggressive approach was able to maintain a loss rate of 0.06% while the more
aggressive protocol had alossrate of 1.6%. The reason for these results has to do with the characteristics of
both the network connection and the communication endpoints. In particular, the receiving host (ANL) is
generaly lightly loaded, as is the network connection between ANL and CACR. Thus the aggressive
protocol tends to reach and exceed the maximum sending rate that can be supported by this connection. The
non-aggressive protocol on the other hand tends to find and stay at a sending rate just below this maximum
threshold. TCP performed quite poorly on this connection, obtaining only 7% of the available bandwidth.

Both application level congestion control mechanisms also performed well on the connection between
CACR and NCSA. The state-based control mechanism achieved a throughput rate of over 90% of the
maximum available bandwidth with a loss rate of 1.15%. The non-aggressive protocol however was able to
achieve only 82% of the maximum available bandwidth with a loss rate of 0.2%. TCP on the other hand
was able to achieve a throughput rate equal to only 15% of the maximum available bandwidth.

The results obtained by the application-level protocols can again be explained by the characteristics of the
end-to-end connection. In particular, the host at the receiving end (NCSA) is lightly loaded for reasonably
long periods of time, but the system load tends to spike up on an infrequent and (generally) short-lived
basis. As discussed below, we speculate that these spikes in system load result in similar spikes in packet
loss. The state-based approach recovers quickly from spikes in the packet loss rate resulting in a higher
overall throughput rate. The non-aggressive approach however tends to keep reducing its sending rate in
search of a “safe” range within which it can transmit data (with a very low loss rate), and increases this
sending rate very slowly.

It is important to note that the packet loss rates shown in Table 2 represent the mean values taken over the
entire 50-Gigabyte data transfer. It is also important to consider the fluctuations in the loss rate over the life
of the transfer, and to speculate on the impact of such fluctuations. We discuss these issues in the next
section.

4.1 Spikesin Packet L oss

In both application-level approaches the packet loss rate remains very low for large segments of the data
transfer. However, there are periods within which the loss rate spikes up (very briefly) to close to 50% for
the state-based approach, and up to 20% in the non-aggressive approach. The question then is whether
such spikes represent increasing contention within the network (thus causing other applications to similarly
loose data), or whether it represents some other, perhaps less critical, event in the end-to-end system. We
are very interested in this issue since it has a direct bearing on the question of whether large-scale data

% The reason for this poor performance is not yet understood as the documentation shows a Gigabit Ethernet
connection between the front end and Abilene. We are attempting to resolve this issue with the system
administrators at CACR.



transfers are more appropriately viewed from an end-to-end system- or network-level perspective. While it
is difficult to answer such questions definitively, we can look to see if a change in the state of some other
system component coincides with changes in the rate of observed packet 10ss.

To investigate this issue, we performed a 50-Gigabyte data transfer between CACR and NCSA with the
sending rate set to a constant 95 Mbs and the congestion control mechanisms disabled. This allowed the
packet loss rate to fluctuate solely in response to changing end-to-end system conditions. Concurrently, we
used the System Activity Reported (SAR) to track changes in system load at the receiving host. Theideais
that as the load on the system increases, the amount of CPU time available to the receiving process
decreases. Thus the receiving process will more often be either swapped out or waiting in the run queue
when the UDP data packets arrive at the network interface, and many such packets will be discarded due to
the best-effort nature of connectionless protocols. The results of these experiments are shown in Figures 1
and 2.

As can be seen, the spikes in data loss appear to correspond quite closely with spikesin system load at the
receiving host. While we have not yet performed a detailed statistical analysis of this apparent relationship
(although we are currently conducting such a study), it is certainly reasonable to speculate that such a
relationship exists. Assuming thisisin fact the case, the next question is how to use this type of information
in the congestion control mechanisms. Our initial response is to say that if the spikes in observed data loss
do not in fact represent congestion developing within the network, then the existence of such spikes is
perhaps not significantly problematic (at least with respect to the network). Thus it may be reasonable to
tolerate short-lived increasesin dataloss if it can be determined that (at least with high probability) it is not
going to result in congestion collapse in the network. However, the impact on the receiving host also has to
be determined and considered in the congestion control mechanisms.

5. Related Work

There has been a significant amount of research related to the development of application level
communication protocols including RUDP [9], SABUL [13], GridFTP [1], and PSockets [12]. Of these
approaches, RUDP does not implement congestion control, and GridFTP and Psockets essentialy
circumvent the TCP congestion control mechanisms by allocating multiple TCP streams for a single data
transfer. SABUL does implement congestion control that is closely aligned with that employed by TCP. In
particular, it employs a feedback control interval on the order of a single round trip time (similar to TCP),
and reduces its sending rate by a constant amount when the loss rate exceeds a given threshold. Also, there
has been research related to modifying the congestion control parameters within TCP itself to provide
better performance in a high-bandwidth, high-delay network environment [11].

FOBS is unique in that it is developing multiple congestion control mechanisms with the ability to
dynamically switch between mechanisms in response to changes in the state of the end-to-end system.
Also, we are investigating approaches that allow for a much longer feedback control interval (i.e.
significantly greater than a single round trip time) while maintaining very low rates of dataloss. Finally, we
are investigating mechanisms to determine the root causes of observed packet loss, with the goal of
providing responses that are tailored to the particular problem being encountered.

6. Conclusionsand Current Research

In this paper, we have discussed the initial phases of our research into application-level congestion control
mechanisms for a high-performance, application-level data transfer system. We have shown that both
approaches are able to achieve between 80% and 90% of the maximum available bandwidth, while
maintaining an overall loss rate between 0.06% and 1.15%. This compares quite well with TCP that was
able to achieve only 15% of this maximum rate. Also, we have presented experimental results in
combination with system monitoring to push forward the notion that large-scale data transfers are more
appropriately viewed from a system, rather than a network, perspective.

Our current research is aimed at further developing the concept of system-aware data transfers, where
information related to the state of the end-to-end system is collected and leveraged in the congestion



control mechanisms. Towards this end, we are developing sensors to monitor the state of various system-
level components, and performing statistical analyses to explore the relationships between changes in the
end-to-end system and the behavior and performance of the data transfer protocol.
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TABLES:

Host Architecture NIC Operating System

ANL 2* 500 MHz 100 Mbs Linux Red Hat 7.3
Pentium 3.

NCSA IBM IntelliStation Z Gig-E Linux Red Hat 7.1
Pro 6894
(dual processor)

CACR HP N4000 4 processor 100 Mbs HP-UX 11.10

Table 1: Thistable depictsthe har dwar e and softwar e configurations of the hostsused in

thisstudy.

Network Connection Protocol Per centage of M aximum Overall Packet Loss
Throughput Achieved Per centane

CACR to ANL

Non-Aggressive 92% 0.06%
CACRto ANL State-Based 93% 1.6%
CACR toNCSA :

Non-Aggressive 8004 0.2%
CACRtoNCSA

State-Based 92.6% 1.15%
CACRtoNCSA TCP 15%

Table 2: This table depicts the percentage of the maximum possible bandwidth obtained by
the two application-level protocols as well as the loss rates for the various network
connections. Also, it showsthe percentage of the maximum bandwidth obtained by TCP over

these same connections.




FIGURES:

System Load Measured at Ten Second Intervals
(As Reported by SAR)
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Figure 1: Thisfigure depictsthe system load at ten second intervals over a 13-hour period
asreported by SAR. Thehost was User01 at NCSA.
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Figure 2: Thisfiguredepictsthe packet lossrate over the same 13-hour period.
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