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ABSTRACT 
 
Given the critical nature of communications in 
computational Grids it is important to develop 
efficient, intelligent, and adaptive 
communication mechanisms. An important 
milestone on that path is the development of 
classification mechanisms that can distinguish 
between the many factors that can cause data 
loss in cluster and Grid environments. In this 
paper, we describe our work in developing such 
a mechanism and its integration into a high-
performance communication system for 
computational Grids. The classification 
algorithms are based on the analysis of what 
may be termed packet-loss-signatures that 
describe the patters of packet loss in the current 
transmission window. We present experimental 
data showing that the classification system can 
execute as part of the communication system 
with reasonable overhead, and that it can 
accurately distinguish between causes of packet 
loss at loss rates as low as 0.03%.  
 
Introduction 
 
Computational Grids create large-scale 
distributed systems by connecting geographically 
distributed computational and data-storage 
facilities via high-performance networks. Such 
systems, which can harness and bring to bear 
tremendous computational resources on a single 
large-scale problem, are becoming an 
increasingly important component of the national 
computational infrastructure. At the heart of such 
systems is the high-performance communication 
infrastructure that allows the geographically 
distributed computational elements to function as 
a single (and tightly-coupled) computational 
platform.  Given the importance of Grid 
technologies to the scientific community, 
research projects aimed at making the 
communication system more efficient, 
intelligent, and adaptive are both timely and 
critical.  
     An important milestone on the path to such 
next-generation communication systems is the 
development of a classification mechanism that 
can distinguish between the many factors that 
can cause data loss in current cluster/Grid 

environments. The idea is to use the 
classification mechanism to respond to data loss 
in a way that is appropriate for the particular set 
of system dynamics responsible for such loss. 
Given such a capability, the communication 
system can take full advantage of the underlying 
bandwidth when system conditions permit, can 
back off in response to observed (or predicted) 
contention within the network, and can 
accurately distinguish between these two 
situations.  
     This research is addressing the issue of 
identifying the root cause(s) of data loss as 
observed by a high-performance data transfer 
system during the course of its execution. The 
approach we are pursuing is to analyze what may 
be termed packet-loss signatures, which show 
the distribution (or pattern) of those packets that 
successfully traversed the end-to-end 
transmission path and those that did not. These 
signatures are collected by the receiver and 
delivered to the sender upon request. Thus the 
packet-loss signatures are essentially large 
selective-acknowledgment packets, and are so 
named based on our belief (with support from 
previous research results [14, 15]) that different 
classes of error mechanisms have different 
“signatures”. We are applying complexity theory 
to the problem of learning the underlying 
structure (or lack thereof) of these signatures, 
and studying the relationship between such 
underlying structure and the system conditions 
responsible for its generation. Our research has 
shown that complexity measures capture quite 
well the underlying system dynamics, and that 
understanding such dynamics provides 
significant insight into the cause(s) of observed 
data loss.  
      Currently, the packet-loss signatures are 
collected and stored during the data transfer but 
are analyzed offline. This research addresses the 
issue of integrating the classification mechanism 
into an existing high-performance data transfer 
system, and the calculation of complexity values 
as the data transfer is progressing. The longer-
term goal of this work is to use, in a highly 
adaptive and efficient data transfer system, 
information related to the root cause(s) of data 



loss. However, this paper focuses on techniques 
to build and integrate such classifiers; 
adaptations based on this knowledge will be the 
focus of forthcoming papers.  
   The testbed for this research is FOBS1: a high-
performance data transfer system for 
computational Grids developed by the author2[9-
12, 25]. FOBS is a UDP-based data transfer 
system that provides reliability through a 
selective-acknowledgment and retransmission 
mechanism. As noted above, it is precisely the 
information contained within the selective-
acknowledgment packets that is collected and 
analyzed by our classification mechanism. 
   Three important factors, whose combination is 
unique among high-performance data transfer 
mechanisms for computational Grids, make 
FOBS an excellent testbed for this research.  
First, FOBS is an application-level protocol. 
Thus the congestion-control algorithms can 
collect, synthesize, and leverage information 
from a higher-level view than is possible when 
operating at the kernel level. Second, the 
complexity measures can be obtained as a 
function of a constant sending rate. Thus the 
values of the variables collected are (largely) 
unaffected by the behavior of the algorithm 
itself. Third, FOBS is structured as a feedback 
control system. Thus the external data (e.g., the 
complexity measures) can be analyzed at each 
control point, and this data can be used to 
determine the duration of the next control 
interval and the rate at which data will be placed 
onto the network during this interval. We do not 
discuss further the design, implementation, or 
performance of FOBS here. The interested reader 
is directed to [11-13] for detailed discussions on 
these issues.  

In this paper, we focus on distinguishing 
between contention for network resources  and 
contention for CPU resources. This distinction is 
important for two reasons. First, contention for 
CPU cycles can be a major contributor to packet 
loss in UDP-based protocols such as FOBS. This 
happens, for example, when the receiver’s 
socket-buffer becomes full, additional data 
bound for the receiver arrives at the host, and the 
receiver is switched out and thus unavailable to 
pull such packets off of the network. To illustrate 
this issue, consider a data transfer with a sending 
rate of one gigabit per second and a packet size 
of 1024 bytes. Given this scenario, a packet will 
                                                           
1 Fast Object-Based data transfer System 
2 In collaboration with D.W. Gropp (Argonne 
National  Laboratory).  

arrive at the receiving host every 7.9 micro-
seconds, which is approximately the amount of 
time required to perform a context switch on the 
TeraGrid systems [1] used in this research (as 
measured by Lmbench [19]).                                                                     

The second reason this distinction is 
important is that data loss resulting from CPU 
contention is completely outside of the network 
domain and should not be interpreted as growing 
network condition. This opens the door for new, 
less aggressive responses, for this class of data 
loss. 

It is important to point out that we used 
contention at the NIC as a proxy for network 
contention for two reasons: First, while it was 
relatively easy to create contention at the NIC 
level, it was extremely difficult to create 
contention within the 40 gigabit per second 
networks that connect the facilities on the 
TeraGrid. Second, there is little difference in the 
complexity measures obtained when data loss is 
caused by contention at an intermediate router 
and by contention at a NIC.  

This paper makes two important 
contributions. First, it demonstrates a simple 
classification mechanism that is quite powerful 
in its ability to distinguish between various 
causes of packet loss. Second, and to the best of 
our knowledge, this represents the first time a 
classification mechanism has been integrated 
into a data transfer system and executed 
dynamically.  This paper should be of interest to 
a large segment of the Grid community given the 
interest in and importance of exploring new 
approaches by which data transfers can be made 
more intelligent and efficient.  

The rest of the paper is organized as follows. 
In Section 2, we discuss related work. In Section 
3, we discuss the complexity analysis used in our 
research and show how such techniques can be 
applied to the packet-loss signatures. In Section 
4, we describe the implementation of the 
classification mechanism and its integration into 
FOBS. In Section 5, we discuss the experimental 
design, and present the results of these 
experiments in Section 6. In Section 7, we 
provide our conclusions and outline future work. 

 
2     Related Work 
 
The issue of distinguishing between categories of 
losses has received significant attention within 
the context of TCP for hybrid wired/wireless 
networks (e.g., [3-6, 18, 24]). The idea is to 
distinguish between losses caused by network 
congestion and losses caused by errors in the 



wireless link, and to trigger TCP’s aggressive 
congestion control mechanisms only in the case 
of congestion-induced losses. This ability to 
classify the root cause of data loss, and to 
respond accordingly, has been shown to improve 
the performance of TCP in this network 
environment [3, 18, 23]. These classification 
schemes are based largely on simple statistics on 
observed round-trip times, observed throughput, 
or the inter-arrival time between ACK packets 
[5, 7, 18]. Debate remains, however as to how 
well techniques based on such simple statistics 
can classify loss [18]. Another approach being 
pursued is the use of Hidden Markov Models 
where the states are characterized by the mean 
and standard deviation of the distribution of 
round-trip times [18]. Hidden Markov Models 
have also been used to model network channel 
losses and make inferences about the state of the 
channel [20].  
  Our research has similar goals, although 
we are developing a finer-grained classification 
system to distinguish between contention at the 
NIC, contention in the network, and contention 
for CPU resources. Also, we believe that 
complexity measures may prove to be a more 
robust classifier than (for example) statistics on 
round-trip times and could be substituted for 
such statistics within the mathematical 
frameworks established in these related works. 
Similar to the projects discussed above, we 
separate the issue of classification of root 
cause(s) of data loss from the issue of 
implementing responses based on such 
knowledge.  
     Research into other application-level 
alternatives to TCP is also related (e.g., [2, 21, 
22]). However, none of these projects attempt to 
determine the root cause(s) of observed packet 
loss that is a major focus of our research.  
 
3   Diagnostic Methodology 
 
The packet-loss signatures can be analyzed as 
time series data with the objective of identifying 
diagnostics that may be used to characterize 
causes of packet loss. A desirable attribute of a 
diagnostic is that it can describe the dynamical 
structure of the time series. The approach we are 
taking is the application of symbolic dynamics 
techniques, which have been developed by the 
nonlinear dynamics community and are highly 
appropriate for time series of discrete data. This 
approach to classifying causes of packet loss 
works because of the differing timescales over 
which such losses occur.  For example, packet 

loss due primarily to network-based causes such 
as router contention or contention at the NIC is 
likely to show temporal structure over a wide 
variety of timescales reaching down to the 
spacing between packets.  A platform-based 
cause such as CPU contention at the host upon 
which the data receiver is executing will more 
likely be associated with a narrower range of 
longer timescales (e.g., the size of the time slice 
allocated to the receiver in a time-sharing 
system). 
    In symbolic dynamics [17], the packet-loss 
signature is a sequence of symbols drawn from a 
finite discrete set, which in our case is two 
symbols: 1 and 0.  One diagnostic that quantifies 
the amount of structure in the sequence is 
complexity.  There are numerous ways to 
quantify complexity.  In this discussion, we have 
chosen the hierarchical approach of d’Alessandro 
and Politi [8], which has been applied with 
success to quantify the complexity and 
predictability of time series of hourly 
precipitation data [16].  
   The approach of d’Alessandro and Politi is to 
view the stream of 1s and 0s as a language and 
focus on subsequences (or words) of length n in 
the limit of increasing values of n  (i.e., 
increasing word length). First-order complexity, 
denoted by C1, is a measure of the richness of the 
language’s vocabulary and represents the 
asymptotic growth rate of the number of 
admissible words of fixed length n occurring 
within the string as n becomes large. The 
number of admissible words of length n, denoted 
by Na(n), is simply a count of the number of 
distinct words of length n found in the given 
sequence. For example, the string 0010100 has 
Na(1) = 2 (0,1), Na(2) = 3 (00,01,10), Na(3) = 4 
(001, 010, 101, 100). The first-order complexity 
(C1) is defined as  
 

C1  = 
∞>−n

lim (log2 Na(n)) / n .                       (1)

  
The first-order complexity metric characterizes 
the level of randomness or periodicity in a string 
of symbols. A string consisting of only one 
symbol will have one admissible word for each 
value of n, and will thus have a value of C1=0. A 
purely random string will, in the limit, have a 
value of C1=1.  A string that is comprised of a 
periodic sequence, or one comprising only a few 
periodic sequences, will tend to have low values 
of C1. 
      As noted, a hierarchy of complexity values is 
defined in [8]. The next level of the hierarchy is 



a quantity termed C2 that captures the fact that 
random strings are of lower complexity than 
strings that have rules governing their creation. 
We do not discuss this quantity here because we 
have not yet integrated it into our classification 
mechanism.  
 
4    Implementation of Classifiers  
 
The classification mechanism uses a sliding 
window of length n to search for all of the 
admissible words of length n in the signature. If, 
for example, it is searching for words of length n 
= 3, then the first window would cover symbols 
0-3, the second window would cover symbols 1-
4, and so forth. Recall that the symbols are either 
1 or 0, and represent the received/not-received 
status of each packet in the transmission 
window. As each word is examined, an attempt 
is made to insert it into a binary tree whose 
branches equal to either 1 or 0. Inserting the 
word into the tree consists of following the path 
of the symbol string through the tree until either 
(1), a branch in the path is not present or (2), the 
end of the symbol string is reached. If a branch 
does not exist, it is added to the tree and the 
traversal continues. In such a case, the word has 
not been previously encountered and the number 
of admissible words (for the current word size) is 
incremented. Similarly, if the complete path 
from the root of the tree to the end of the symbol 
string already exists, then the word has been 
previously encountered and the count of 
admissible words is unchanged. Given the count 
of admissible words of length n, it is straight-
forward to calculate the complexity value for that 
word length. 
     The integration of the classification 
mechanism into FOBS is made possible (or at 
least reasonably straight-forward) by the fact that 
FOBS is a synchronous communication protocol. 
That is, the sender and receiver synchronize after 
all of the data in the current transmission 
window has been successfully received. The 
receiver then writes the data to disk (assuming it 
is a file transfer) while the sender reads from 
disk the data to be sent in the next transmission 
window. The complexity values are also 
computed during this time and provided to the 
controller. The controller, in turn, uses the 
complexity values (and other variables discussed 
below) to determine the size of the next 
transmission window and the rate at which the 
data will be sent during the window.  
      
5     Experimental Design 

 
A set of experiments were conducted to answer 
two fundamental questions: First, are the 
statistics associated with each type of data loss 
different enough to allow for classification based 
on those statistics? Second, what is the cost of 
performing the classification dynamically?  
     All experiments were conducted on the 
TeraGrid [1]: a high-performance computational 
Grid that connects various supercomputing 
facilities via networks capable of operating at 
speeds up to  40 gigabits per second. The two 
facilities used in these experiments were the 
Center for Advanced Computing Research 
(CACR, located at the California Institute of 
Technology), and the National Center for 
Supercomputing Applications (NCSA, located at 
the University of Illinois, Urbana). The host 
platforms at both facilities were IA-64 Linux 
clusters where each compute node consisted of 
dual Intel Itanium2 processors. The compute 
nodes were 1.3 GHz at CACR and 1.5 GHz at 
NCSA. The operating system at both facilities 
was Linux 2.4.21-SMP. Each compute node had 
a gigabit Ethernet connection to the TeraGrid 
network.  
     The experiments were designed to capture a 
large set of complexity measures under known 
conditions. In one set of experiments, the data 
receiver executed on a dedicated processor 
within CACR, and additional compute-bound 
processes were spawned on this same processor 
to create CPU contention. As the number of 
additional processes was increased, the amount 
of time the data receiver was switched out 
similarly increased. Since the data receiver was 
not available to take packets off of the network 
during the times it was switched-out, there was a 
direct relationship between CPU load and the 
resulting packet loss rate. We were interested in 
analyzing the structure of the bitmaps as a 
function of both the root cause of data loss (i.e., 
contention for CPU or NIC resources) and the 
loss rate. We therefore varied the number of 
additional processes to obtain a wide range of 
loss rates.  
   To investigate loss patterns caused by 
contention for NIC resources, we initiated a 
second (background) data transfer. The data 
sender of the background transfer executed on a 
different node within NCSA, and the receiver 
executed on the second processor within the 
same node as the primary data receiver. Since 
both processors of a given node share the same 
NIC, we were able to generate contention at the 
NIC without causing contention for CPU cycles 



with the two receivers. Initially, the combined 
sending rate was set to the maximum speed of 
the NIC (one gigabit per second), and contention 
for NIC resources was increased by increasing 
the sending rate of the background transfer. The 
packet loss experienced by both data transfers 
was a function of the combined sending rate, and 
this rate was also set to provide a wide range of 
loss rates.  
     In both sets of experiments, the complexity 
values were computed at each control point. 
Thus we were able to determine the cost of the 
classification based on the difference between 
the sending rate and the actual throughput. All 
experiments were performed late at night when 
there was little (if any) network contention. The 
sending rate was held constant at 800 megabits 
per second to accurately gauge the cost of the 
classification mechanism. Similar to the 
technique of loss pairs [18], we maintained a 
parallel data transfer (with the same send rate) 
that traversed the same network path except for 
the last hop. This approach was taken to 
determine the impact of contention within the 
network path as a cause of data loss. Similarly, 
we used hardware counters to track the state of 
the network internal to the data receiver and to 
track other CPU events such as process creation, 
paging, and context switches.  

 
6     Experimental Results 
 
Figure 1 shows the differences in complexity 
values as a function of the root cause of data 
loss. As can be seen, the complexity measures 
tend to diverge very quickly with increasing loss 
rates. This is very encouraging in terms of using 
complexity measures as a classifier for causes of 
data loss.  
     Figure 2 focuses on the complexity values 
associated with very low loss rates. As can be 
seen, the complexity measures are quite close 
until the loss rate reaches approximately 0.003. 
From this we conclude that complexity measures 
in and of themselves are not powerful enough to 
serve as a classifier at very low loss rates. Thus a 
focus of our current research is the development 
of other variables that can be used either instead 
of or in conjunction with complexity measures at 
low loss rates.  
     Figure 3 points out an interesting anomaly in 
the data where the complexity measure 
associated with CPU contention is significantly 
higher than any other such value. We examined 
the log of the hardware metrics collected during 
each transmission window to see if it could shed 

light on what caused such a high complexity 
value. It turned out that there were twenty 
processes created during that particular window 
resulting in approximately 6000 context 
switches. The purpose of the processes is 
unknown, but they were external to the data 
transfer. Given that there was no loss of data due 
to network contention, it is assumed that all of 
the extra CPU activity was responsible for the 
increased complexity. This shows that significant 
changes in CPU activity, as shown by the 
variables collected by the hardware counters, 
may also be quite helpful in ruling in or out 
various causes of packet loss.  
     The final metric of interest was the cost of 
dynamically analyzing the packet-loss 
signatures. As noted, the sending rate was a 
constant 800 megabits per second. The overall 
throughput was measured at 670 megabits per 
second. Thus the classification mechanism has 
an overhead of approximately 16%.  
 
7  Conclusions and Future Research 
 
In this paper, we have shown that complexity 
measures of packet-loss signatures can be highly 
effective as a classifier for causes of packet loss 
over a wide range of loss rates. Also, it was 
shown that the divergence of complexity 
measures, and thus the ability to discriminate 
between causes of packet loss, increases rapidly 
with increasing loss rates. However, for loss 
rates less than approximately 0.003, it was 
shown that complexity measures in and of 
themselves are not powerful enough to 
discriminate between causes of packet loss. Thus 
our current research efforts are focused on 
identifying other metrics or statistical models 
that can be effective at very low loss rates.  
     We also showed that it is quite feasible to 
integrate our classification mechanism with an 
existing high-performance data transfer system, 
and to compute the complexity values as the data 
transfer is progressing. While this computation 
represents an overhead of approximately 16%, it 
still represents a very good tradeoff when 
contention for CPU resources is a major source 
of data loss.  
     The ability to classify the temporal dynamics 
of packet loss behavior (as expressed by the 
packet-loss signatures) offers two significant 
advantages. First, such classification allows the 
control mechanisms to apply corrective actions 
based on the particular cause of packet loss. For 
example, the control mechanisms may be able to 
migrate the data receiver, rather than drastically 



reducing the sending rate, when the root cause of 
packet loss is determined to be contention for 
CPU (rather than network) resources. Second, if 
the underlying dynamics has structure, it may be 
possible to construct simple predictors that allow 
the data transmitter to shape its behavior in such 
a way as to increase the probability that a sent 
packet is received successfully. These are 
enticing possibilities, and the exploration, 
evaluation, and integration of these techniques to 
the problem of large-scale data transfers 
represents the focus of our current research 
activities.  
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Figure 1. This figure shows the first-order 
complexity measures associated with NIC 
contention and CPU contention. The loss rate 
is varied from 0% to 10%. 
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Figure 3. This figure points out a very high 
complexity value  that is not associated with 
NIC contention. 
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Figure 2. This figure shows the first-order 
complexity measures associated with NIC 
contention and CPU contention at very low 
loss rates. The loss rate is varied from 0% to 
1.5%.  
 
 
 
 
 

 


